搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

部分相干幂指数相位涡旋光束的传输特性研究

陈康 马志远 张明明 窦健泰 胡友友

引用本文:
Citation:

部分相干幂指数相位涡旋光束的传输特性研究

陈康, 马志远, 张明明, 窦健泰, 胡友友

Propagation properties of partially coherent power-exponent-phase vortex beam

Chen Kang, Ma Zhi-Yuan, Zhang Ming-Ming, Dou Jian-Tai, Hu You-You
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文针对部分相干幂指数相位涡旋光束的传输特性开展研究, 首先建立了部分相干幂指数相位涡旋光束的传输理论模型; 然后, 仿真研究了部分相干幂指数相位涡旋光束在自由空间和ABCD光学系统中的传输特性, 研究结果表明部分相干幂指数相位涡旋光束在自由空间传输时, 拓扑荷数、幂指数和相干长度都对光强的分布有着一定的影响, 而随着传播距离的增大光斑的面积逐渐增大; 当光束在聚焦系统中传输时, 只有拓扑荷数和幂指数的变化会影响光强的分布, 而相干长度对光束整体强度的分布没有太大的影响, 只影响了光斑的质量. 本文研究成果揭示了部分相干幂指数相位涡旋光束的传输特性, 为其在光学捕获等领域的应用打下了理论基础, 对促进新型光场调控理论及应用研究具有重要的意义.
    In this work, the propagation properties of partially coherent power-exponent-phase vortex beam are studied. Firstly, the propagation model of partially coherent power-exponent-phase vortex beam is established. Then, the propagation properties of partially coherent power-exponent-phase vortex beams in free space and ABCD optical system are simulated. The results show that when power-exponent-phase vortex beams propagate in free space, the topological charge, power order and coherence length have a great influence on the distribution of light intensity, and the area of light spot gradually increases with the increase of propagation distance. When the beam propagates in a focusing system, the changes of topological charge and power order will affect the light intensity distribution, while the coherence length has little effect on the overall intensity distribution of the beam, but only the quality of the spot. The research results of this work reveal the propagation properties of partially coherent power-exponent-phase vortex beam, which will lay a theoretical foundation for its applications in optical capture and other fields, and has important significance in promoting the theory and applications of new light field regulation.
      通信作者: 胡友友, yyhu@just.edu.cn
    • 基金项目: 江苏省自然科学基金青年基金(批准号: BK20190953)和镇江市重点研发计划-产业前瞻与共性关键技术(批准号: GY2020003)资助的课题
      Corresponding author: Hu You-You, yyhu@just.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190953) and the Key RD Program of Zhenjiang City — Industrial Foresight and Common Key Technology (Grant No. GY2020003).
    [1]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [2]

    Ng J, Lin Z, Chan C T 2010 Phys. Rev. Lett. 104 103601Google Scholar

    [3]

    Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G 2015 Adv. Opt. Photonics 7 66Google Scholar

    [4]

    Huang K, Liu H, Restuccia S, Mehmood M Q, Mei S T, Giovannini D 2018 Light Sci. Appl. 7 17156Google Scholar

    [5]

    Ni J, Wang C, Zhang C, Hu Y, Yang L, Lao Z 2017 Light Sci. Appl. 26 e17011

    [6]

    Chow T W, Pechprasarn S, Meng J 2016 Opt. Express 24 10797Google Scholar

    [7]

    Li P, Liu S, Peng T, Xie G, Gan X, Zhao J 2014 Opt. Express 22 7598Google Scholar

    [8]

    Lao G, Zhang Z, Zhao D 2016 Opt. Express 24 18082Google Scholar

    [9]

    Pei Z, Huang S, Chen Y 2021 J. Mod. Opt. 68 224Google Scholar

    [10]

    Wang F, Liu X, Yuan Y 2013 Opt. Lett. 38 1814Google Scholar

    [11]

    Yu J, Zhu X, Lin S 2020 Opt. Lett. 45 3824Google Scholar

    [12]

    Cai Y J, Zhu S Y 2004 Opt. Lett. 29 2716

    [13]

    Clark J N, Huang X, Harder R, Robinson I K 2012 Nat. Commun. 3 1

    [14]

    Zhao C, Cai Y J, Lu X, Eyyuboğlu H T 2009 Opt. Express 17 1753Google Scholar

    [15]

    Wang F, Cai Y J, Dong Y 2012 Appl. Phys. Lett. 100 051108Google Scholar

    [16]

    刘森森, 宋华冬, 林伟强, 陈旭东, 蒲继雄 2019 物理学报 68 074201

    Liu S S, Song H D, Lin W Q, Chen X D, Pu J X 2019 Acta Phys. Sin. 68 074201

    [17]

    Xu H F, Zhou Y, Wu H W 2018 Opt. Express 26 20076Google Scholar

    [18]

    张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄 2015 物理学报 64 034205

    Zhang L, Chen Z Y, Cui X W, Liu J L, Pu J X 2015 Acta Phys. Sin. 64 034205

    [19]

    王飞, 余佳益, 刘显龙, 蔡阳健 2018 物理学报 67 184203

    Wang F, Yu J Y, Liu X L, Cai Y J 2018 Acta Phys. Sin. 67 184203

    [20]

    Xu H F, Zhang R, Sheng Z Q 2019 Opt. Express 27 23959Google Scholar

    [21]

    Dong M, Zhao C L, Cai Y J 2021 Sci. China. Phys. Mech. 64 1Google Scholar

    [22]

    Liu X, Zeng J, Cai Y J 2019 Adv. Phys. X 4 1626766

    [23]

    Stahl C S D 2018 (The University of North Carolina at Charlotte).

    [24]

    Wolf E 2017 Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press) p88

    [25]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge University Press) p276

    [26]

    Ma P, Kacerovská B, Khosravi R 2019 Appl. Sci. 9 2084Google Scholar

    [27]

    Zhao C, Dong Y, Wang Y 2012 Appl. Phys. B 109 345Google Scholar

    [28]

    Wang T, Pu J, Chen Z 2008 Opt. Eng. 47 036002Google Scholar

  • 图 1  (a), (c) 拓扑荷数l=4的涡旋光束和(b), (d)拓扑荷数l = 4及幂指数n = 2的幂指数相位涡旋光束在源平面上的相位和强度分布

    Fig. 1.  Phase and intensity distributions of (a), (c) vortex beam (l = 4) and (b), (d) power-exponent-phase vortex beam (l = 4, n = 2) on the source plane.

    图 2  部分相干幂指数相位涡旋光束的传输特性与拓扑荷数l和幂指数n的关系

    Fig. 2.  Relationship between propagation properties of partially coherent power-exponent-phase vortex beams with the topological charge l and power order n

    图 3  部分相干幂指数相位涡旋光束传输特性与相干长度δ和传输距离z的关系

    Fig. 3.  Relationship between propagation properties of partially coherent power-exponent-phase vortex beams with the coherence length δ and propagation distance z.

    图 4  聚焦系统示意图

    Fig. 4.  Schematic diagram of focusing system.

    图 5  相干长度δ = 0.5 mm时, 部分相干幂指数相位涡旋光束聚焦特性与幂指数n、拓扑荷数l的关系

    Fig. 5.  Relationship between focusing properties of partially coherent power-exponent-phase vortex beams and power order n and topological charge l with coherent length δ = 0.5 mm.

    图 6  部分相干幂指数相位涡旋的聚焦特性与相干长度δ的关系

    Fig. 6.  Relationship between focusing properties of partially coherent power-exponent-phase vortex beams and coherent length δ

  • [1]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [2]

    Ng J, Lin Z, Chan C T 2010 Phys. Rev. Lett. 104 103601Google Scholar

    [3]

    Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G 2015 Adv. Opt. Photonics 7 66Google Scholar

    [4]

    Huang K, Liu H, Restuccia S, Mehmood M Q, Mei S T, Giovannini D 2018 Light Sci. Appl. 7 17156Google Scholar

    [5]

    Ni J, Wang C, Zhang C, Hu Y, Yang L, Lao Z 2017 Light Sci. Appl. 26 e17011

    [6]

    Chow T W, Pechprasarn S, Meng J 2016 Opt. Express 24 10797Google Scholar

    [7]

    Li P, Liu S, Peng T, Xie G, Gan X, Zhao J 2014 Opt. Express 22 7598Google Scholar

    [8]

    Lao G, Zhang Z, Zhao D 2016 Opt. Express 24 18082Google Scholar

    [9]

    Pei Z, Huang S, Chen Y 2021 J. Mod. Opt. 68 224Google Scholar

    [10]

    Wang F, Liu X, Yuan Y 2013 Opt. Lett. 38 1814Google Scholar

    [11]

    Yu J, Zhu X, Lin S 2020 Opt. Lett. 45 3824Google Scholar

    [12]

    Cai Y J, Zhu S Y 2004 Opt. Lett. 29 2716

    [13]

    Clark J N, Huang X, Harder R, Robinson I K 2012 Nat. Commun. 3 1

    [14]

    Zhao C, Cai Y J, Lu X, Eyyuboğlu H T 2009 Opt. Express 17 1753Google Scholar

    [15]

    Wang F, Cai Y J, Dong Y 2012 Appl. Phys. Lett. 100 051108Google Scholar

    [16]

    刘森森, 宋华冬, 林伟强, 陈旭东, 蒲继雄 2019 物理学报 68 074201

    Liu S S, Song H D, Lin W Q, Chen X D, Pu J X 2019 Acta Phys. Sin. 68 074201

    [17]

    Xu H F, Zhou Y, Wu H W 2018 Opt. Express 26 20076Google Scholar

    [18]

    张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄 2015 物理学报 64 034205

    Zhang L, Chen Z Y, Cui X W, Liu J L, Pu J X 2015 Acta Phys. Sin. 64 034205

    [19]

    王飞, 余佳益, 刘显龙, 蔡阳健 2018 物理学报 67 184203

    Wang F, Yu J Y, Liu X L, Cai Y J 2018 Acta Phys. Sin. 67 184203

    [20]

    Xu H F, Zhang R, Sheng Z Q 2019 Opt. Express 27 23959Google Scholar

    [21]

    Dong M, Zhao C L, Cai Y J 2021 Sci. China. Phys. Mech. 64 1Google Scholar

    [22]

    Liu X, Zeng J, Cai Y J 2019 Adv. Phys. X 4 1626766

    [23]

    Stahl C S D 2018 (The University of North Carolina at Charlotte).

    [24]

    Wolf E 2017 Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press) p88

    [25]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge University Press) p276

    [26]

    Ma P, Kacerovská B, Khosravi R 2019 Appl. Sci. 9 2084Google Scholar

    [27]

    Zhao C, Dong Y, Wang Y 2012 Appl. Phys. B 109 345Google Scholar

    [28]

    Wang T, Pu J, Chen Z 2008 Opt. Eng. 47 036002Google Scholar

  • [1] 徐华锋, 张兴宇, 王仁杰. 部分相干多离轴涡旋矢量光束的传输特性. 物理学报, 2024, 73(3): 034201. doi: 10.7498/aps.73.20231484
    [2] 袁鹏举, 杨蕴哲, 董世杰, 唐苗苗. 镜像与反镜像扭曲高斯谢尔模光束的传输特性. 物理学报, 2024, 73(21): 214201. doi: 10.7498/aps.73.20241023
    [3] 钟哲强, 张翔, 张彬, 袁孝. 大气湍流和热晕综合效应下旋转光束的传输特性. 物理学报, 2023, 72(6): 064204. doi: 10.7498/aps.72.20221597
    [4] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211411
    [5] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展. 物理学报, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [6] 朱洁, 唐慧琴, 李晓利, 刘小钦. 具有余弦-高斯关联结构函数部分相干贝塞尔-高斯光束的传输性质及四暗空心光束的产生. 物理学报, 2017, 66(16): 164202. doi: 10.7498/aps.66.164202
    [7] 孙晓艳, 雷泽民, 卢兴强, 吕风年, 张臻, 范滇元. 不同22集束聚焦方式下高功率激光靶面光强分布特性. 物理学报, 2016, 65(6): 064203. doi: 10.7498/aps.65.064203
    [8] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [9] 郑尚彬, 唐碧华, 姜云海, 罗亚梅, 高曾辉. 部分相干刃型位错光束的谱Stokes奇点. 物理学报, 2016, 65(1): 014202. doi: 10.7498/aps.65.014202
    [10] 余佳益, 陈亚红, 蔡阳健. 非均匀拉盖尔-高斯关联光束及其传输特性. 物理学报, 2016, 65(21): 214202. doi: 10.7498/aps.65.214202
    [11] 李杨, 朱竹青, 王晓雷, 贡丽萍, 冯少彤, 聂守平. 离轴椭圆矢量光场传输中的光斑演变. 物理学报, 2015, 64(2): 024204. doi: 10.7498/aps.64.024204
    [12] 刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴. 小宽带光谱色散匀滑光束传输特性研究. 物理学报, 2014, 63(16): 164201. doi: 10.7498/aps.63.164201
    [13] 周建华, 李栋华, 曾阳素, 朱鸿鹏. 梯度负折射率介质中高斯光束传输特性的研究. 物理学报, 2014, 63(10): 104205. doi: 10.7498/aps.63.104205
    [14] 陈雪琼, 陈子阳, 蒲继雄, 朱健强, 张国文. 平顶光束经表面有缺陷的厚非线性介质后的光强分布. 物理学报, 2013, 62(4): 044213. doi: 10.7498/aps.62.044213
    [15] 丁攀峰, 蒲继雄. 离轴拉盖尔-高斯涡旋光束传输中的光斑演变. 物理学报, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [16] 王 涛, 蒲继雄. 部分相干空心光束在湍流介质中的传输特性. 物理学报, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
    [17] 季小玲, 汤明玥. 一维线阵离轴高斯光束通过湍流大气的传输特性. 物理学报, 2006, 55(9): 4968-4973. doi: 10.7498/aps.55.4968
    [18] 邬鹏举, 李玉德, 林晓燕, 刘安东, 孙天希. x射线在毛细导管中传输的模拟计算. 物理学报, 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [19] 张 蕾, 蔡阳健, 陆璇辉. 一种新空心光束的理论及实验研究. 物理学报, 2004, 53(6): 1777-1781. doi: 10.7498/aps.53.1777
    [20] 王喜庆, 吕百达. 贝塞耳函数调制的高斯光束通过有光阑ABCD光学系统的传输. 物理学报, 2001, 50(4): 682-685. doi: 10.7498/aps.50.682
计量
  • 文章访问数:  6553
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-09-22
  • 上网日期:  2021-12-30
  • 刊出日期:  2022-01-05

/

返回文章
返回