搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低太阳高度角条件下的天空偏振模式模拟及大气折射影响研究

胡帅 高太长 李浩 程天际 刘磊 黄威 江诗阳

引用本文:
Citation:

低太阳高度角条件下的天空偏振模式模拟及大气折射影响研究

胡帅, 高太长, 李浩, 程天际, 刘磊, 黄威, 江诗阳

Atmospheric polarization pattern simulation for small solar elevation angles and the analysis of atmospheric effect

Hu Shuai, Gao Tai-Chang, Li Hao, Cheng Tian-Ji, Liu Lei, Huang Wei, Jiang Shi-Yang
PDF
导出引用
  • 为模拟低太阳高度角条件下的天空偏振模式, 自主开发了考虑大气球形几何及大气折射效应的辐射传输模式VSPART, 并将其运用于漫射光偏振特性仿真. 在模式中, 基于射线追踪法实现了光线传播轨迹的追踪和入射光偏振态及透过率的计算, 基于矩阵算法实现了辐射传输方程的求解. 将VSPART模拟结果与基准值、SPDISORT模拟值进行了比较, 验证了模型的准确性. 在瑞利散射大气和含气溶胶大气条件下, 模拟并分析了漫射光偏振度及偏振方向的分布特征, 讨论了大气球形几何及折射效应对天空偏振度的影响. 结果表明, 低太阳高度角条件下, 随着波长增加, 瑞利散射大气对应的偏振度整体随之增强, 中性点向大天顶角方向移动; 气溶胶的存在并不改变天空偏振度分布特征, 但对偏振方向影响显著, 随着光学厚度的增加, 天空偏振度值迅速降低; 中性点的偏移可能与低阶散射过程紧密相关; 大气球形几何和折射效应的主要影响区域为地平线区域、两中性点附近及天顶区域; 瑞利散射大气条件下, 随着波长增加, 大气球形几何及折射效应的影响逐步减弱, 特别在中性点附近及天顶区域, 其影响逐步消失; 随着气溶胶光学厚度的增加, 其影响随之增强.
    To simulate the atmospheric polarization pattern for small solar elevation angle, we develop a the vector radiative transfer model VSPART (vector pseudo-spherical radiative transfer model considering refraction), and use it to calculate the polarization state of downwelling diffuse light. In this model, the propagation trajectory, transmittance rate and polarization states of directly transmitted light are tracked by ray-tracing method for spherical refractive atmosphere. Based on the matrix algorithm, an improved method to solve the radiative transfer equation is proposed. Output of this model includes not only the Stokes vector and degree of polarization of diffuse light, but also the polarized irradiance. The precision of VSPART is validated against the benchmark results, literature results and SPDISORT, and excellent agreement is achieved. DOP (degree of polarization) and AOP (angle of polarization) are simulated for pure Rayleigh scattering atmosphere and atmosphere with aerosol, and the characteristics of their angular distributions are analyzed. In addition, the influences of atmospheric spherical geometry and refraction effect on the sky DOP are discussed as well. Simulation results show that for low solar elevation angle, with the increasing of wavelength, DOP increases gradually, and the Arago and Babinet neutral points move towards the horizon when Rayleigh scattering atmosphere is considered. Although the existence of aerosol does not change the basic distribution of DOP, it has a significant influence on AOP. With the increasing of aerosol optical depth, DOP decreases gradually, and the distribution of AOP changes dramatically. By comparing the sky distribution of DOP, it could also be concluded that the neutral points might arise from low order scattering. The area affected by atmospheric spherical geometry and atmospheric refraction effect mainly includes the area near horizontal directions, the area near the neutral points and the area perpendicular to the ground. For pure Rayleigh scattering atmosphere, the influence is reduced with the increasing of the wavelength of incident light, especially for the areas near the neutral points, where the influence gradually disappears as wavelength increases. For atmosphere with aerosol, with their optical depth increasing, the effects of atmospheric spherical geometry and atmospheric refraction are gradually enhanced.
      通信作者: 高太长, 2009gaotc@gmail.com
    • 基金项目: 国家自然基金(批准号: 41575025, 41475020, 41475024)资助的课题.
      Corresponding author: Gao Tai-Chang, 2009gaotc@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41575025, 41475020, 41475024).
    [1]

    Rozanov V V, Rozanov A V, Kokhanovsky A A, Burrows J P 2014 J. Quant. Spectrosc. Radiat. Transfer 133 13

    [2]

    Emde C, Buras R, Mayer B, Blumthaler M 2010 Atmos. Chem. Phys. 10 383

    [3]

    Wu L H, Zhang J, Fan Z G, Gao J 2014 Acta Phys. Sin. 63 114201 (in Chinese) [吴良海, 张骏, 范之国, 高隽 2014 物理学报 63 114201]

    [4]

    Cui Y, Gao Q S, Chu J K, Chen C 2013 Opt. Precis. Eng. 21 34 (in Chinese) [崔岩, 高启升, 褚金奎, 陈辰 2013 光学精密工程 21 34]

    [5]

    Guan G X, Yan L, Chen J B, Wu T X, Wu B 2011 Acta Armament. 32 459 (in Chinese) [关桂霞, 晏磊, 陈家斌, 吴太夏, 吴波 2011 兵工学报 32 459]

    [6]

    Pust N J, Shaw J A 2011 J. Appl. Remote Sens. 5 053529

    [7]

    Pust N J, Shaw J A 2007 Proc. SPIE 6682 668204

    [8]

    Pust N J 2007 Ph. D. Dissertation (Montana: Montana state university)

    [9]

    Horvath G, Barta A, Gal J, Suhai B, Haiman O 2002 Appl. Opt. 41 543

    [10]

    Liu Q, Chu J K, Wang J, Guan L 2014 Acta Opt. Sin. 34 0301004 (in Chinese) [刘琦, 褚金奎, 王兢, 关乐 2014 光学学报 34 0301004]

    [11]

    Wang W, Chu J K, Cui Y, Zhi W 2013 Chin. J. Lasers 40 0513001 (in Chinese) [王威, 褚金奎, 崔岩, 支炜 2013 中国激光 40 0513001]

    [12]

    Wu L H 2010 M. S. Dissertation (Hefei: Hefei University of Technology) (in Chinese) [吴良海 2010 硕士学位论文(合肥: 合肥工业大学)]

    [13]

    Evans K F, Stephens G L 1991 J. Quant. Spectrosc. Radiat. Transfer 46 413

    [14]

    Schulz F M, Stamnes K 2000 J. Quant. Spectrosc. Radiat. Transfer 65 609

    [15]

    Min Q L, Duan M Z 2004 J. Quant. Spectrosc. Radiat. Transfer 87 243

    [16]

    Lenoble J, Herman J, Deuz M, Lafrance J L, Santer B, Tanr R 2007 J. Quant. Spectrosc. Radiat. Transfer 107 479

    [17]

    Evans K F 1998 J. Atmos. Sci. 55 429

    [18]

    Doicu A, Efremenko D, Trautmann T 2013 J. Quant. Spectrosc. Radiat. Transfer 118 121

    [19]

    Whitney B A 2011 Bull. Astr. Soc. India 39 1

    [20]

    Cornet C, Labonnote L C, Szczap F 2010 J. Quant. Spectrosc. Radiat. Transfer 111 174

    [21]

    Emde C, Mayer B 2007 Atmos. Chem. Phys. 7 2259

    [22]

    Ben X, Yi H L, Tan H P 2014 Chin. Phys. B 23 099501

    [23]

    Li J, Shibata K 2006 J. Atmos. Sci. 63 1365

    [24]

    Spurr R J D 2006 J. Quant. Spectrosc. Radiat. Transfer 102 316

    [25]

    Natraj V, Spurr R J D 2007 J. Quant. Spectrosc. Radiat. Transfer 107 263

    [26]

    Spurr R J D, Christi M J 2007 J. Quant. Spectrosc. Radiat. Transfer 103 431

    [27]

    Hu S, Gao T C, Li H, Liu L, Cheng T J, Zhang T 2015 Acta Phys. Sin. 64 184203 (in Chinese) [胡帅, 高太长, 李浩, 刘磊, 程天际, 张婷 2015 物理学报 64 184203]

    [28]

    Rao R Z 2012 Modern Optics (Beijing: Scientific Express) p123 (in Chinese) [饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第123页]

    [29]

    de Haan J F, Bosma P B, Hovenier J W 1987 Astron. Astrophys. 183 371

    [30]

    de Rooij W A, van der Stap C C A H 1984 Astron. Astrophys. 131 237

    [31]

    Dahlback A, Stamnes K 1991 Planet Space Sci. 39 671

    [32]

    Hess M, Koepke P, Schult I 1998 Bull. Am. Meteor. Soc. 79 831

    [33]

    Mayer B, Kyllig A 2005 Atmos. Chem. Phys. 5 1855

  • [1]

    Rozanov V V, Rozanov A V, Kokhanovsky A A, Burrows J P 2014 J. Quant. Spectrosc. Radiat. Transfer 133 13

    [2]

    Emde C, Buras R, Mayer B, Blumthaler M 2010 Atmos. Chem. Phys. 10 383

    [3]

    Wu L H, Zhang J, Fan Z G, Gao J 2014 Acta Phys. Sin. 63 114201 (in Chinese) [吴良海, 张骏, 范之国, 高隽 2014 物理学报 63 114201]

    [4]

    Cui Y, Gao Q S, Chu J K, Chen C 2013 Opt. Precis. Eng. 21 34 (in Chinese) [崔岩, 高启升, 褚金奎, 陈辰 2013 光学精密工程 21 34]

    [5]

    Guan G X, Yan L, Chen J B, Wu T X, Wu B 2011 Acta Armament. 32 459 (in Chinese) [关桂霞, 晏磊, 陈家斌, 吴太夏, 吴波 2011 兵工学报 32 459]

    [6]

    Pust N J, Shaw J A 2011 J. Appl. Remote Sens. 5 053529

    [7]

    Pust N J, Shaw J A 2007 Proc. SPIE 6682 668204

    [8]

    Pust N J 2007 Ph. D. Dissertation (Montana: Montana state university)

    [9]

    Horvath G, Barta A, Gal J, Suhai B, Haiman O 2002 Appl. Opt. 41 543

    [10]

    Liu Q, Chu J K, Wang J, Guan L 2014 Acta Opt. Sin. 34 0301004 (in Chinese) [刘琦, 褚金奎, 王兢, 关乐 2014 光学学报 34 0301004]

    [11]

    Wang W, Chu J K, Cui Y, Zhi W 2013 Chin. J. Lasers 40 0513001 (in Chinese) [王威, 褚金奎, 崔岩, 支炜 2013 中国激光 40 0513001]

    [12]

    Wu L H 2010 M. S. Dissertation (Hefei: Hefei University of Technology) (in Chinese) [吴良海 2010 硕士学位论文(合肥: 合肥工业大学)]

    [13]

    Evans K F, Stephens G L 1991 J. Quant. Spectrosc. Radiat. Transfer 46 413

    [14]

    Schulz F M, Stamnes K 2000 J. Quant. Spectrosc. Radiat. Transfer 65 609

    [15]

    Min Q L, Duan M Z 2004 J. Quant. Spectrosc. Radiat. Transfer 87 243

    [16]

    Lenoble J, Herman J, Deuz M, Lafrance J L, Santer B, Tanr R 2007 J. Quant. Spectrosc. Radiat. Transfer 107 479

    [17]

    Evans K F 1998 J. Atmos. Sci. 55 429

    [18]

    Doicu A, Efremenko D, Trautmann T 2013 J. Quant. Spectrosc. Radiat. Transfer 118 121

    [19]

    Whitney B A 2011 Bull. Astr. Soc. India 39 1

    [20]

    Cornet C, Labonnote L C, Szczap F 2010 J. Quant. Spectrosc. Radiat. Transfer 111 174

    [21]

    Emde C, Mayer B 2007 Atmos. Chem. Phys. 7 2259

    [22]

    Ben X, Yi H L, Tan H P 2014 Chin. Phys. B 23 099501

    [23]

    Li J, Shibata K 2006 J. Atmos. Sci. 63 1365

    [24]

    Spurr R J D 2006 J. Quant. Spectrosc. Radiat. Transfer 102 316

    [25]

    Natraj V, Spurr R J D 2007 J. Quant. Spectrosc. Radiat. Transfer 107 263

    [26]

    Spurr R J D, Christi M J 2007 J. Quant. Spectrosc. Radiat. Transfer 103 431

    [27]

    Hu S, Gao T C, Li H, Liu L, Cheng T J, Zhang T 2015 Acta Phys. Sin. 64 184203 (in Chinese) [胡帅, 高太长, 李浩, 刘磊, 程天际, 张婷 2015 物理学报 64 184203]

    [28]

    Rao R Z 2012 Modern Optics (Beijing: Scientific Express) p123 (in Chinese) [饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第123页]

    [29]

    de Haan J F, Bosma P B, Hovenier J W 1987 Astron. Astrophys. 183 371

    [30]

    de Rooij W A, van der Stap C C A H 1984 Astron. Astrophys. 131 237

    [31]

    Dahlback A, Stamnes K 1991 Planet Space Sci. 39 671

    [32]

    Hess M, Koepke P, Schult I 1998 Bull. Am. Meteor. Soc. 79 831

    [33]

    Mayer B, Kyllig A 2005 Atmos. Chem. Phys. 5 1855

  • [1] 吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭. 大气光学湍流模式研究—方法和进展. 物理学报, 2023, 72(4): 049201. doi: 10.7498/aps.72.20221986
    [2] 王明军, 席建霞, 王婉柔, 李勇俊, 张佳琳. 声波扰动对大气湍流内外尺度与折射率功率谱函数的影响分析. 物理学报, 2023, 72(12): 124303. doi: 10.7498/aps.72.20230003
    [3] 钟哲强, 张翔, 张彬, 袁孝. 大气湍流和热晕综合效应下旋转光束的传输特性. 物理学报, 2023, 72(6): 064204. doi: 10.7498/aps.72.20221597
    [4] 姚海, 何姿, 丁大志, 陈如山, 党训旺, 陈勇. 粗糙面上粒子层矢量辐射传输方程的二阶迭代解法. 物理学报, 2022, 71(3): 034201. doi: 10.7498/aps.71.20211183
    [5] 张坤, 罗涛, 王菲菲, 孙刚, 刘庆, 青春, 李学彬, 翁宁泉, 朱文越. 基于探空数据分析低云对大气折射率结构常数的影响. 物理学报, 2022, 71(8): 089202. doi: 10.7498/aps.71.20211792
    [6] 姚海, 何姿, 丁大志, 陈如山, 党训旺, 陈勇. 粗糙面上粒子层矢量辐射传输方程的高阶迭代解法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211183
    [7] 张建柱, 张飞舟, 苏华, 胡鹏, 谢晓钢, 罗文. 强激光上行大气传输热晕效应导致的光束偏折研究. 物理学报, 2021, 70(24): 244202. doi: 10.7498/aps.70.20211138
    [8] 王成, 范之国, 金海红, 汪先球, 华豆. 全偏振大气偏振模式成像系统的设计与优化分析. 物理学报, 2021, 70(10): 104201. doi: 10.7498/aps.70.20210104
    [9] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [10] 胡帅, 高太长, 刘磊, 易红亮, 贲勋. 偏振光在非球形气溶胶中传输特性的Monte Carlo仿真. 物理学报, 2015, 64(9): 094201. doi: 10.7498/aps.64.094201
    [11] 胡帅, 高太长, 李浩, 刘磊, 程天际, 张婷. 大气折射对可见光波段辐射传输特性的影响. 物理学报, 2015, 64(18): 184203. doi: 10.7498/aps.64.184203
    [12] 吴良海, 张骏, 范之国, 高隽. 多次散射因素影响下天空偏振光模式的解析模型. 物理学报, 2014, 63(11): 114201. doi: 10.7498/aps.63.114201
    [13] 杨爱林, 林强. 部分相干Airy光束在湍流大气中传输时的偏振特性. 物理学报, 2014, 63(20): 204101. doi: 10.7498/aps.63.204101
    [14] 李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲. 光源参数及大气湍流对电磁光束传输偏振特性的影响. 物理学报, 2014, 63(10): 104201. doi: 10.7498/aps.63.104201
    [15] 周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍. 基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究. 物理学报, 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [16] 赵小峰, 黄思训. 垂直天线阵观测信息反演大气折射率廓线. 物理学报, 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [17] 郑巍巍, 王丽琴, 许静平, 王立刚. 带初相位分布的径向基模激光束列阵在湍流大气中的传输特性研究. 物理学报, 2009, 58(7): 5098-5103. doi: 10.7498/aps.58.5098
    [18] 李晋红, 杨爱林, 吕百达. 部分相干厄米-双曲正弦-高斯光束通过湍流大气传输的平均光强分布演化和角扩展. 物理学报, 2009, 58(1): 674-683. doi: 10.7498/aps.58.674
    [19] 梁子长, 金亚秋. 非均匀散射层矢量辐射传输(VRT)方程高阶散射解的迭代法. 物理学报, 2003, 52(2): 247-255. doi: 10.7498/aps.52.247
    [20] 梁子长, 金亚秋. 一层非球形粒子散射的标量辐射传输迭代解的求逆. 物理学报, 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
计量
  • 文章访问数:  6660
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-06
  • 修回日期:  2015-09-06
  • 刊出日期:  2016-01-05

/

返回文章
返回