搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切应变下刃型位错的滑移机理的晶体相场模拟

高英俊 全四龙 邓芊芊 罗志荣 黄创高 林葵

引用本文:
Citation:

剪切应变下刃型位错的滑移机理的晶体相场模拟

高英俊, 全四龙, 邓芊芊, 罗志荣, 黄创高, 林葵

Phase-field-crystal simulation of edge dislocation climbing and gliding under shear strain

Gao Ying-Jun, Quan Si-Long, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao, Lin Kui
PDF
导出引用
  • 针对刃型位错的滑移运动, 构建包含外力场与晶格原子密度耦合作用的体系自由能密度函数, 建立剪切应变作用体系的晶体相场模型. 模拟了双相双晶体系的位错攀移和滑移运动, 计算了位错滑移的Peierls势垒和滑移速度. 结果表明: 施加较大的剪切应变率作用, 体系能量变化为单调光滑曲线, 位错以恒定速度做连续运动, 具有刚性运动特征; 剪切应变率较小时, 体系能量变化出现周期波动特征, 位错运动是处于低速不连续运动状态, 运动出现周期“颠簸”式滑移运动, 具有黏滞运动特征; 位错启动运动, 存在临界的势垒. 位错启动攀移运动的Peierls势垒要比启动滑移Peierls势垒大几倍. 位错攀移和滑移运动特征与实验结果相符合.
    Structural kinetics in crystalline solids is driven heterogeneously at an atomic level by localized defects, which in turn drive mesoscopic and macroscopic phenomena such as structural phase transformation, fracture, and other forms of plastic flows. A complete description of such processes therefore requires a multiscale approach. Existing modeling methods typically operate exclusively either on an atomic scale or on a mesoscopic scale and macroscopic scale. Phase-field-crystal model, on the other hand, provides a framework that combines atomic length scale and mesoacpoic/diffusive time scale, with the potential reaching a mesoacpoic length through systemic multiscale expansion method. In order to study the dislocation movement under shear strain, the free energy density functional including the exerting shear force term is constructed and also the phase field crystal model for system of shear stain is established. The climb and glide of single dislocation in two-grain system are simulated, and the glide velocity of dislocation and the Peierls potential for dislocation gliding are calculated. The results show that the energy curve changing with time are monotonically smooth under a greater shear strain rate, which corresponds to dislocation movement at a constant speed, which is of rigorous characteristic; while under less shear strain rate, the energy change curve of system presents a periodic wave feature and the dislocation movement in the style of periodic “jerky” for gliding with the stick-slip characteristic. There is a critical potential for dislocation starting movement. The Peierls potential wall for climbing movement is many times as high as that for gliding movement. The results in these simulations are in a good agreement with the experimental ones.
    • 基金项目: 国家自然科学基金(批准号: 51161003)、广西自然科学重点基金(批准号: 2012GXNSFDA053001)、 广西大学广西有色金属及特色材料加工重点实验室开放基金(批准号: GXKFJ12-01)和广西研究生教育创新计划项目基金(批准号: YCSZ2014039)资助的课题.
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 51161003), the Nature Science Foundation of Guangxi Province, China (Grant No. 2012GXNSFDA053001), Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials of Guangxi, China (Grant No. GXKFJ12-01) and Education Innovation Foundation of Postgraduate of Guangxi, China (Grant No. YCSZ2014039).
    [1]

    Xu H J, Liu G X 2001 Fundamentals of Materials Science (Beijing: Beijing Industry Press) pp265-279 (in Chinese) [徐恒均, 刘国勋 2001材料科学基础 (北京: 北京工业出版社) 第265-279页]

    [2]

    Hu G X, Cai X 2010 Fundamentals of Materials Science (Shanghai: Shanghai Jiao Tong University Press) pp99-129 (in Chinese) [胡赓祥, 蔡珣 2010 材料科学基础(上海: 上海交通大学出版社) 第99-129页]

    [3]

    Bobylev S V, Ovid’ko I A 2003 Phys. Rev. B 67 132506

    [4]

    Ovidko I A, Skiba N V 2012 Scripta Mater. 67 13

    [5]

    Gukkin M Y, Ovidko I A 2001 Phys. Rev. B 63 064515

    [6]

    Gukkin M Y, Ovidko I A 2004 Acta Mater. 52 3793

    [7]

    Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497 (in Chinese) [张林, 王绍青, 叶恒强 2004 物理学报 53 2497]

    [8]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268

    [9]

    Wang Y, Li J 2010 Acta Mater. 58 1212

    [10]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113

    [11]

    Steinbach I 2009 Modell. Simul. Mater. Sci. Eng. 17 73001

    [12]

    Gao Y J, Luo Z R, Hu X Y 2010 Acta Metall. Sin. 46 1161 (in Chinese) [高英俊, 罗志荣, 胡项英 2010 金属学报 46 1161]

    [13]

    Luo B C, Wang H P, Wei B B 2009 Sci. Bull. 54 7 (in Chinese) [罗炳池, 王海鹏, 魏炳波 2009 科学通报 54 7]

    [14]

    Wang J C, Li J J, Yang Y J 2009 Sci. China E 38 16 (in Chinese) [王锦程, 李俊杰, 杨玉娟 2009 中国科学:E辑 38 16]

    [15]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701

    [16]

    Elder K R, Grant M 2004 Phys. Rev. E 70 51605

    [17]

    Elder K R, Provatas N, Berry J, Stefanovic P, Grant M 2007 Phys. Rev. B 75 064107

    [18]

    Berry J, Grant M, Elder K R 2006 Phys. Rev. E 73 31609

    [19]

    Ren X, Wang J C, Yang Y J, Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese) [任秀, 王锦程, 杨玉娟, 杨根仓 2010 物理学报 59 3595]

    [20]

    Gao Y J, Zhou W Q, Deng Q Q, Luo Z R, Lin K, Huang C G 2014 Acta Metall. Sin. 50 886 (in Chinese) [高英俊, 周文权, 邓芊芊, 罗志荣, 林葵, 黄创高 2014 金属学报 50 886]

    [21]

    Berry J, Elder K R, Grant M 2008 Phys. Rev. B 77 224114

    [22]

    Yu Y M, Rainer B, Axel V 2011 J. Crystal Growth 318 18

    [23]

    Gao Y J, Huang L L, Deng Q Q, Lin K, Huang C G 2014 Front. Mater. Sci. 8 185

    [24]

    Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K 2013 Acta Phys. Sin. 62 050507 (in Chinese) [高英俊, 罗志荣, 黄创高, 卢强华, 林葵 2013 物理学报 62 050507]

    [25]

    Gao Y J, Luo Z R, Huang L L, Lin K 2013 Chin J. Nonferrous Metals 23 1892 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 林葵 2013 中国有色金属学报 23 1892]

    [26]

    Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y 2013 Chin. J. Comput. Phys. 30 577 (in Chinese) [高英俊, 王江帆, 罗志荣, 卢强华, 刘瑶 2013 计算物理 30 577]

    [27]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 046107

    [28]

    Chan P Y, Tsekenis G, Dantzig J 2010 Phys. Rev. Lett. 105 015502

    [29]

    Huang Z F, Elder K R, Provatas N 2010 Phys. Rev. E 82 21605

    [30]

    Yang T, Zhang J, Long J, Long Q H, Chen Z 2014 Chin. Phys. B 23 088109

    [31]

    Hakim V, Karma A 2009 J. Mech. Phys. Solid 57 342

    [32]

    Toth G I, Tegze G 2012 Phys. Rev. Lett. 108 025502

    [33]

    Chan P Y, Tsekenis G, Dantzig J 2010 Phys. Rev. Lett. 105 015502

    [34]

    Muralidharan S, Heataja M 2010 Phys. Rev. Lett. 105 126101

    [35]

    Gao Y J, Luo Z R, Huang L L, Hu X Y 2012 Acta Metall. Sin. 48 1215 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 胡项英 2012 金属学报 48 1215]

    [36]

    Gao Y J, Zhang H L, Jin X, Huang C G, Luo Z R 2009 Acta Metall. Sin. 45 1190 (in Chinese) [高英俊, 张海林, 金星, 黄创高, 罗志荣 2009 金属学报 45 1190]

    [37]

    Trautt Z T, Adland A, Karma A 2012 Acta Mater. 60 6528

    [38]

    Zhang S 2013 M. S. Dissertation (Nanning: Guangxi University) (in Chinese) [张爽 2013 硕士学位论文 (南宁: 广西大学)]

    [39]

    Zhang J S 2004 Strength of Materials (Harbin: Harbin Institute Press of Technology) pp45-205 (in Chinese) [张俊善 2004 材料强度学(哈尔滨: 哈尔滨工业大学出版社) 第45-205页]

    [40]

    Romanov A E, Vladimirov V J 1992 Dislocation in Solids (Vol. 9) (Amsterdam: North-holland) pp191-402

    [41]

    Hirth J P, Lothe J 1982 Theory of Dislocation (New York: Wiley) pp82-450

    [42]

    Derek H 1975 Introduction to Dislocations (Oxford, UK: Pergamon Press) pp50-250

    [43]

    Phillips R 2001 Crystals, Defect and Microstructure. (Cambridge, UK: Cambridge University Press) pp210-420

  • [1]

    Xu H J, Liu G X 2001 Fundamentals of Materials Science (Beijing: Beijing Industry Press) pp265-279 (in Chinese) [徐恒均, 刘国勋 2001材料科学基础 (北京: 北京工业出版社) 第265-279页]

    [2]

    Hu G X, Cai X 2010 Fundamentals of Materials Science (Shanghai: Shanghai Jiao Tong University Press) pp99-129 (in Chinese) [胡赓祥, 蔡珣 2010 材料科学基础(上海: 上海交通大学出版社) 第99-129页]

    [3]

    Bobylev S V, Ovid’ko I A 2003 Phys. Rev. B 67 132506

    [4]

    Ovidko I A, Skiba N V 2012 Scripta Mater. 67 13

    [5]

    Gukkin M Y, Ovidko I A 2001 Phys. Rev. B 63 064515

    [6]

    Gukkin M Y, Ovidko I A 2004 Acta Mater. 52 3793

    [7]

    Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497 (in Chinese) [张林, 王绍青, 叶恒强 2004 物理学报 53 2497]

    [8]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268

    [9]

    Wang Y, Li J 2010 Acta Mater. 58 1212

    [10]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113

    [11]

    Steinbach I 2009 Modell. Simul. Mater. Sci. Eng. 17 73001

    [12]

    Gao Y J, Luo Z R, Hu X Y 2010 Acta Metall. Sin. 46 1161 (in Chinese) [高英俊, 罗志荣, 胡项英 2010 金属学报 46 1161]

    [13]

    Luo B C, Wang H P, Wei B B 2009 Sci. Bull. 54 7 (in Chinese) [罗炳池, 王海鹏, 魏炳波 2009 科学通报 54 7]

    [14]

    Wang J C, Li J J, Yang Y J 2009 Sci. China E 38 16 (in Chinese) [王锦程, 李俊杰, 杨玉娟 2009 中国科学:E辑 38 16]

    [15]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701

    [16]

    Elder K R, Grant M 2004 Phys. Rev. E 70 51605

    [17]

    Elder K R, Provatas N, Berry J, Stefanovic P, Grant M 2007 Phys. Rev. B 75 064107

    [18]

    Berry J, Grant M, Elder K R 2006 Phys. Rev. E 73 31609

    [19]

    Ren X, Wang J C, Yang Y J, Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese) [任秀, 王锦程, 杨玉娟, 杨根仓 2010 物理学报 59 3595]

    [20]

    Gao Y J, Zhou W Q, Deng Q Q, Luo Z R, Lin K, Huang C G 2014 Acta Metall. Sin. 50 886 (in Chinese) [高英俊, 周文权, 邓芊芊, 罗志荣, 林葵, 黄创高 2014 金属学报 50 886]

    [21]

    Berry J, Elder K R, Grant M 2008 Phys. Rev. B 77 224114

    [22]

    Yu Y M, Rainer B, Axel V 2011 J. Crystal Growth 318 18

    [23]

    Gao Y J, Huang L L, Deng Q Q, Lin K, Huang C G 2014 Front. Mater. Sci. 8 185

    [24]

    Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K 2013 Acta Phys. Sin. 62 050507 (in Chinese) [高英俊, 罗志荣, 黄创高, 卢强华, 林葵 2013 物理学报 62 050507]

    [25]

    Gao Y J, Luo Z R, Huang L L, Lin K 2013 Chin J. Nonferrous Metals 23 1892 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 林葵 2013 中国有色金属学报 23 1892]

    [26]

    Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y 2013 Chin. J. Comput. Phys. 30 577 (in Chinese) [高英俊, 王江帆, 罗志荣, 卢强华, 刘瑶 2013 计算物理 30 577]

    [27]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 046107

    [28]

    Chan P Y, Tsekenis G, Dantzig J 2010 Phys. Rev. Lett. 105 015502

    [29]

    Huang Z F, Elder K R, Provatas N 2010 Phys. Rev. E 82 21605

    [30]

    Yang T, Zhang J, Long J, Long Q H, Chen Z 2014 Chin. Phys. B 23 088109

    [31]

    Hakim V, Karma A 2009 J. Mech. Phys. Solid 57 342

    [32]

    Toth G I, Tegze G 2012 Phys. Rev. Lett. 108 025502

    [33]

    Chan P Y, Tsekenis G, Dantzig J 2010 Phys. Rev. Lett. 105 015502

    [34]

    Muralidharan S, Heataja M 2010 Phys. Rev. Lett. 105 126101

    [35]

    Gao Y J, Luo Z R, Huang L L, Hu X Y 2012 Acta Metall. Sin. 48 1215 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 胡项英 2012 金属学报 48 1215]

    [36]

    Gao Y J, Zhang H L, Jin X, Huang C G, Luo Z R 2009 Acta Metall. Sin. 45 1190 (in Chinese) [高英俊, 张海林, 金星, 黄创高, 罗志荣 2009 金属学报 45 1190]

    [37]

    Trautt Z T, Adland A, Karma A 2012 Acta Mater. 60 6528

    [38]

    Zhang S 2013 M. S. Dissertation (Nanning: Guangxi University) (in Chinese) [张爽 2013 硕士学位论文 (南宁: 广西大学)]

    [39]

    Zhang J S 2004 Strength of Materials (Harbin: Harbin Institute Press of Technology) pp45-205 (in Chinese) [张俊善 2004 材料强度学(哈尔滨: 哈尔滨工业大学出版社) 第45-205页]

    [40]

    Romanov A E, Vladimirov V J 1992 Dislocation in Solids (Vol. 9) (Amsterdam: North-holland) pp191-402

    [41]

    Hirth J P, Lothe J 1982 Theory of Dislocation (New York: Wiley) pp82-450

    [42]

    Derek H 1975 Introduction to Dislocations (Oxford, UK: Pergamon Press) pp50-250

    [43]

    Phillips R 2001 Crystals, Defect and Microstructure. (Cambridge, UK: Cambridge University Press) pp210-420

计量
  • 文章访问数:  2167
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-15
  • 修回日期:  2014-11-24
  • 刊出日期:  2015-05-05

剪切应变下刃型位错的滑移机理的晶体相场模拟

  • 1. 广西大学物理科学与工程技术学院, 广西高校新能源材料及相关技术重点实验室, 南宁 530004;
  • 2. 玉林师范学院物理科学与工程技术系, 玉林 537000
    基金项目: 

    国家自然科学基金(批准号: 51161003)、广西自然科学重点基金(批准号: 2012GXNSFDA053001)、 广西大学广西有色金属及特色材料加工重点实验室开放基金(批准号: GXKFJ12-01)和广西研究生教育创新计划项目基金(批准号: YCSZ2014039)资助的课题.

摘要: 针对刃型位错的滑移运动, 构建包含外力场与晶格原子密度耦合作用的体系自由能密度函数, 建立剪切应变作用体系的晶体相场模型. 模拟了双相双晶体系的位错攀移和滑移运动, 计算了位错滑移的Peierls势垒和滑移速度. 结果表明: 施加较大的剪切应变率作用, 体系能量变化为单调光滑曲线, 位错以恒定速度做连续运动, 具有刚性运动特征; 剪切应变率较小时, 体系能量变化出现周期波动特征, 位错运动是处于低速不连续运动状态, 运动出现周期“颠簸”式滑移运动, 具有黏滞运动特征; 位错启动运动, 存在临界的势垒. 位错启动攀移运动的Peierls势垒要比启动滑移Peierls势垒大几倍. 位错攀移和滑移运动特征与实验结果相符合.

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回