-
利用扫描电镜电子通道衬度(SEM-ECC)技术观察研究了[4 18 41]单滑移取向铜单晶体在不同塑性应变幅下的疲劳饱和位错结构及其在不同温度等时退火条件下的热稳定性. 结果表明, 在退火温度为300℃时, 疲劳位错结构(如脉络结构、驻留滑移带PSB楼梯结构、PSB胞结构和迷宫结构等)均发生了明显回复. 当退火温度高于500℃, 上述这些疲劳位错结构基本消失, 均发生了明显的再结晶现象, 并大都伴随有退火孪晶的形成. 分析认为, 再结晶的发生和退火孪晶的出现不仅与退火温度和外加塑性应变幅有关, 还与累积循环塑性应变量有着密切的关系.The fatigue dislocation structures in cyclically saturated [4 18 41] single-slip-oriented Cu single crystal at different values of plastic strain amplitude pl, as well as their thermal stabilities under annealing at different temperatures for 30 min are studied using the electron channeling contrast (ECC) technique in scanning electron microscopy (SEM). It is found that the dislocation structures, such as veins, PSB ladders, PSB cells, Labyrinths, etc. undergo an obvious process of recovery after annealing at 300 ℃. However, when the annealing temperature is higher than 500℃, those dislocation structures basically disappear, and the recrystallization takes place in all specimens, meanwhile, annealing twins form in most cases. The occurrence of the recrystallization and the formation of annealing twins are related not only to the annealing temperature and applied pl, but also closely to the accumulative cyclic plastic strain.
-
Keywords:
- copper single crystal /
- fatigue dislocation structure /
- recrystallization /
- annealing twin
[1] Basinski Z S, Basinski S J 1992 Prog. Mater. Sci. 36 89
[2] Suresh S 1998 Fatigue of Materials. 2nd edition (London: Cambridge University Press)
[3] Li X W, Hu Y M, Wang Z G 1998 Mater. Sci. Eng. A 248 299
[4] Tahata T, Fujita H, Hiraoka M, Onishi IC 1983 Philos. Mag. 47A 841
[5] Chen S, Gottstein S 1989 Mater. Sci. Eng. 110 9
[6] Wang Z R 1998 Scripta Mater 39 493
[7] Zhu R, Li S X, Li Y, Li M Y, Chao Y S 2004 Acta Metall Sin. 40 467 (in Chinese) [朱荣, 李守新, 李勇, 李明扬, 晁月盛 2004 金属学报 40 467]
[8] Xiao S H, Guo J D, Wu S D, He G H, Li S X 2002 Acta Metall Sin. 38 161 (in Chinese) [肖素红, 郭敬东, 吴世丁, 何冠虎, 李守新 2002 金属学报 38 161]
[9] Kuhlman-Wilsdorf D, Comins N R 1983 Mater. Sci. Eng. 60 7
[10] Kuhlman-Wilsdorf D 1999 Philos. Mag. A 79 955
[11] Glazov M, Llanes L M, Laird C 1995 Phys. Stat. Sol. (a) 149 297
[12] Zhou Y, Li X W, Zhang G P, Zhang Z F 2009 Mater. Sci. Tech. 17 649 (in Chinese) [周杨, 李小武, 张广平, 张哲峰 2009 材料科学与工艺 17 649]
[13] Li X W, Zhang Z F, Wang Z G, Li S X, Umakoshi Y 2001 Def. Diffus. Forum 188-190 153
[14] Feng D 1999 Metal Physics-Mechanical Properties of Metals (Volume 3) (Beijing: Science Press) p22 (in Chinese) [冯端 1999 金属物理学-金属力学性质(第三卷) (北京: 科学出版社p22]
-
[1] Basinski Z S, Basinski S J 1992 Prog. Mater. Sci. 36 89
[2] Suresh S 1998 Fatigue of Materials. 2nd edition (London: Cambridge University Press)
[3] Li X W, Hu Y M, Wang Z G 1998 Mater. Sci. Eng. A 248 299
[4] Tahata T, Fujita H, Hiraoka M, Onishi IC 1983 Philos. Mag. 47A 841
[5] Chen S, Gottstein S 1989 Mater. Sci. Eng. 110 9
[6] Wang Z R 1998 Scripta Mater 39 493
[7] Zhu R, Li S X, Li Y, Li M Y, Chao Y S 2004 Acta Metall Sin. 40 467 (in Chinese) [朱荣, 李守新, 李勇, 李明扬, 晁月盛 2004 金属学报 40 467]
[8] Xiao S H, Guo J D, Wu S D, He G H, Li S X 2002 Acta Metall Sin. 38 161 (in Chinese) [肖素红, 郭敬东, 吴世丁, 何冠虎, 李守新 2002 金属学报 38 161]
[9] Kuhlman-Wilsdorf D, Comins N R 1983 Mater. Sci. Eng. 60 7
[10] Kuhlman-Wilsdorf D 1999 Philos. Mag. A 79 955
[11] Glazov M, Llanes L M, Laird C 1995 Phys. Stat. Sol. (a) 149 297
[12] Zhou Y, Li X W, Zhang G P, Zhang Z F 2009 Mater. Sci. Tech. 17 649 (in Chinese) [周杨, 李小武, 张广平, 张哲峰 2009 材料科学与工艺 17 649]
[13] Li X W, Zhang Z F, Wang Z G, Li S X, Umakoshi Y 2001 Def. Diffus. Forum 188-190 153
[14] Feng D 1999 Metal Physics-Mechanical Properties of Metals (Volume 3) (Beijing: Science Press) p22 (in Chinese) [冯端 1999 金属物理学-金属力学性质(第三卷) (北京: 科学出版社p22]
计量
- 文章访问数: 7759
- PDF下载量: 454
- 被引次数: 0