搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米孪晶界对可动位错演化特性与金属Al强化机理探究

王胜 陈晶晶 翁盛槟

引用本文:
Citation:

纳米孪晶界对可动位错演化特性与金属Al强化机理探究

王胜, 陈晶晶, 翁盛槟

Investigation into movable dislocation evolution feature and strengthening effect for metal twin Al from atomic perspective

Wang Sheng, Chen Jing-Jing, Weng Sheng-Bin
PDF
HTML
导出引用
  • 位错是金属塑性变形普遍形式, 对其可动位错演化特性与规律探寻并充分利用, 将在金属强韧化提升中有着潜在基础前瞻性研究价值. 本文基于分子动力学法对金属Al塑性变形的可动位错迁演特性展开研究, 洞悉纳米压痕诱导的可动位错与孪晶界面间作用规律, 揭示出金属强化微观机制, 并分析单层孪晶界高度与多层孪晶界层间距对可动位错迁演、位错密度、硬度、黏着效应的影响. 研究发现: 高速变形下的金属非晶产生和密排六方结构的出现会协同主导Al基塑性变形, 而孪晶界会阻碍可动位错滑移、诱导可动位错缠绕及交滑移产生, 在金属承载提升中扮演了位错墙和诱导位错胞形成的微观作用. 通过在孪晶界形成钉扎位错和限制位错迁移, 在受限域形成高密度局域可动位错, 显著强化了金属硬度和韧性, 降低了卸载时黏附于探针表面的原子数. 结果表明: Al基受载会诱导上表面局部非接触区原子失配斑出现; 单层孪晶界高度离基底上表面距离减小时, 位错缠绕和交滑移作用越明显, 抗黏着效应也随之下降; 载荷持续增加会诱驱孪晶界成为位错萌生处与发射源, 并伴随塑性环的繁衍增殖.
    It is an universal phenomenon that the dislocations are produced in metal plastic deformation, which will has a potential value in fundamental research field for metal strengthening and toughening if its evolution characteristics and laws are investigated. Therefore, this behavior of movable dislocation for metal Al is studied by atomic simulation, and the microscopic mechanism of metal strengthening and toughening are also revealed through studying the interaction between movable dislocation induced by nano-indentation and twin boundary. Furthermore, the movable dislocation features, and dislocation density, and hardness, and adhesive effect are analyzed, and the comparison between the single boundary height and the multilayer twin boundary height is conducted. It is found that the plastic deformation of aluminum mental can be dominant by coordinating the amorphous generation and hexagonal close-packed structure under high speed deformation. In the nano-indentation process, the twin boundary has two obvious effects on movable dislocation of moving changes: one is to hinder the dislocation from migrating, the other is to induce dislocation to produce a cell, which result in the dislocation entanglement and generation of cross slip, it is also the main reason why the metal has excellent mechanical properties of strengthening and toughening features. These results demonstrate that the local non-contact region on the surface of Al substrate can induce atomic mismatch spots to appear during loading, and when the distance between the twin boundary and the upper surface of the substrate decreases, the effects of dislocation winding and dislocation slip become more obvious, and the anti-adhesion effect also decreases. In addition, the twin boundary is treated as the propagation of plastic ring source in the dislocation emission process when substrate is continuously loaded. These results provide an important theoretical source for improving metal strengthening and toughening effect.
      通信作者: 陈晶晶, chenjingjingfzu@126.com
    • 基金项目: 浙江省基础公益研究计划 (批准号: LGC21E050002)、福建省自然科学基金(批准号: 2017J01709, 2018J01556)、衢州市科技计划 (批准号: 2020K17)、浙江省教育厅一般科研项目 (批准号: Y202044634)和宁德师范学院重大科研培育项目 (批准号: 2017ZDK19)资助的课题
      Corresponding author: Chen Jing-Jing, chenjingjingfzu@126.com
    • Funds: Project supported by the Public Welfare Research Program of Zhejiang Province, China (Grant No. LGC21E050002), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2017J01709, 2018J01556), the Research Achievements of Quzhou Science and Technology Project, China (Grant No. 2020K17), the Research Achievements of General Scientific Research Projects of Zhejiang Education Department, China (Grant No. Y202044634), and the Major Project of Ningde Normal University, China (Grant No. 2017ZDK19)
    [1]

    翁盛槟, 陈晶晶, 周建强, 林晓亮 2021 表面技术 50 216

    Weng S B, Chen J J, Zhou J Q, Lin X L 2021 Surf. Tech. 50 216

    [2]

    Alhafez I A, Ruestes C J, Bringa E M, Urbassek H M J 2019 Alloys Compd. 803 618Google Scholar

    [3]

    Narayan J, Zhu Y T 2008 Appl. Phys. Lett. 92 151908Google Scholar

    [4]

    Jin Z H, Dunham S T, Gleiter H, Gumbschd P 2011 Scr. Mater 64 60

    [5]

    Jiang Z, Liu X, Li G, Lian J 2006 Appl. Phys. Lett. 88 143115Google Scholar

    [6]

    Schwaiger R, Moser B, Dao M, Suresh S 2003 Acta Mater. 51 5159Google Scholar

    [7]

    Wang Y M, Hamza A V, Ma E 2006 Acta Mater. 54 2715Google Scholar

    [8]

    Wei Y J, Bower A F, Gao H J 2008 Acta Mater. 56 1741Google Scholar

    [9]

    Zhang K, Weertman J R, Eastman J A 2005 Appl. Phys. Lett. 87 061921Google Scholar

    [10]

    Gianola D S, Petegem S V, Legros M, Swygenhovenet H V, Hemker K J 2006 Acta Mater. 54 2253Google Scholar

    [11]

    Rajagopalan J, Han J H, Saif M T A 2007 Science 315 1831Google Scholar

    [12]

    Rajagopalan J, Han J H, Saif M T A 2008 Scr. Mater. 59 921Google Scholar

    [13]

    Li X Y, Wei Y J, Yang W, Gao H J 2009 PNAS 106 16108Google Scholar

    [14]

    李晓雁 2014 金属学报 50 219

    Li X Y 2014 Aata Metal. Sin. 50 219

    [15]

    Frøseth A G, Derlet P M, Swygenhoven H V 2006 Scr. Mater. 54 477

    [16]

    Cao F H, Wang Y J, Dai L H 2020 Acta Mater. 194 283Google Scholar

    [17]

    Lee S B, Vaid A, Im J, Kim B S, Prakashet A, Guénolé J L, Kiener D, Bitzek E 2020 Nat. Commun. 11 2367Google Scholar

    [18]

    Lai M, Zhang X D, Fang F Z 2013 Nanoscale Res. Lett. 8 353Google Scholar

    [19]

    Kizuka T 1998 Phys. Rev. B 57 11158Google Scholar

    [20]

    Zhang L F, Zhou H F, Qu S X 2012 Nanoscale Res. Lett. 7 1Google Scholar

    [21]

    Wang Z J, Li Q J, Li Y, Huang L C, Lu L, Dao M, Li J, Ma E, Suresh S, Shan Z W 2017 Nat. Commun. 1108 1

    [22]

    Kou Z D, Yang Y Q, Yang L X 2018 Scr. Mater. 145 28Google Scholar

    [23]

    Yamakov V, Wolf D, Phillpot S R 2003 Acta Mater. 51 4135Google Scholar

    [24]

    Zhang M, Chen J, Xu T. J 2020 Appl. Phys. 127 125303Google Scholar

    [25]

    Liao X Z, Zhou F, Lavernia E J, Srinivasan S G, Baskes M L, He D W, Zhu Y T 2003 Appl. Phys. Lett. 83 632Google Scholar

    [26]

    Huang C, Peng X H, Yang B, Zhao Y B, Weng S Y, Fu T 2017 Nanomaterials 7 375Google Scholar

    [27]

    Gravell J D, Ryu I 2020 Acta Mater. 190 58Google Scholar

    [28]

    Xiang H G, Li H T, Fu T 2017 Acta Mater. 138 131Google Scholar

    [29]

    Cui Y H, Li H T, Xiang H G, Peng X H 2019 Appl. Surf. Sci. 466 757Google Scholar

    [30]

    Guo J, Chen J J, Wang Y Q 2020 Ceram. Int. 46 12686Google Scholar

    [31]

    Stukowski 2009 Model Simul. Mater. S C 18 015012

    [32]

    Foiles S M, Baskes M I, Daw M S 1988 Phys. Rev. B 33 7983

    [33]

    Zhu Y, Ma H T, Fan H 2018 Machine Tool and Hydraulics 46 21

    [34]

    Morse P M 1929 Phys. R 34 57Google Scholar

    [35]

    Qian Y, Shang F L, Wan Q 2018 J. Appl. Phys. 24 115102

    [36]

    Goel S, Beake B, Chan C W, Faisal N H, Dunne N 2015 Mater. Sci. Eng. A 627 249Google Scholar

    [37]

    Fan X, Rui Z, Cao H 2019 Materials 12 770Google Scholar

  • 图 1  单晶Al和孪晶Al的纳米压痕三维原子物理模型

    Fig. 1.  Three dimensional physical model for single crystal aluminum and twin aluminum substrates constructed by atomic simulation method.

    图 2  单晶Al和孪晶Al纳米压痕时塑性变形差异

    Fig. 2.  Plastic deformation are compared between single crystal Al and twin Al during nano-indentation.

    图 3  单晶Al和孪晶Al纳米压痕时剪切变形差异

    Fig. 3.  Shear stain difference between single crystal Al and twin Al during nano-indentation.

    图 4  单晶Al和孪晶Al纳米压痕可动位错演化特性对比

    Fig. 4.  Evolution characteristics of movable dislocation are compared by single crystal Al and twin Al during nano-indentation.

    图 5  压痕可动位错对孪晶Al变形影响

    Fig. 5.  Influence of movable dislocation on the deformation of twin Al during nano-indentation.

    图 6  (a) 纳米压痕中的载荷与位移曲线; (b) 位错线密度与位移曲线; (c)相变转化类型与位移关系; (d) 硬度与孪晶界高度曲线; (e)卸载的粘着数目与孪晶界高度曲线

    Fig. 6.  (a) Load vs. displacement during nano-indentation; (b) dislocation density vs. displacement; (c) phase transition of structure number vs. displacement, (d) hardness vs. twin boundary height, (e) adhesive number vs. twin boundary height.

    图 7  强化效应对孪晶Al层数依赖性的定性与定量评价 (a)—(d)多层孪晶塑性变形过程; (e)多层孪晶界高度d和层间距n示意; (f)载荷与位移曲线; (g)接触力0时的探针位移到探针最大下降位移的平均硬度值

    Fig. 7.  Qualitative and quantitative evaluation of the dependence of strengthening effect on single or multilayer layers for twin Al: (a)–(d) Multi-layer twinning plastic deformation process; (e) schematic diagram described according to twin height d and inter-layer distance n; (f) load vs. displacement; (g) average hardness and calculated between tip displacement at initial phase as the contact force is zero and its displacement at last stage.

  • [1]

    翁盛槟, 陈晶晶, 周建强, 林晓亮 2021 表面技术 50 216

    Weng S B, Chen J J, Zhou J Q, Lin X L 2021 Surf. Tech. 50 216

    [2]

    Alhafez I A, Ruestes C J, Bringa E M, Urbassek H M J 2019 Alloys Compd. 803 618Google Scholar

    [3]

    Narayan J, Zhu Y T 2008 Appl. Phys. Lett. 92 151908Google Scholar

    [4]

    Jin Z H, Dunham S T, Gleiter H, Gumbschd P 2011 Scr. Mater 64 60

    [5]

    Jiang Z, Liu X, Li G, Lian J 2006 Appl. Phys. Lett. 88 143115Google Scholar

    [6]

    Schwaiger R, Moser B, Dao M, Suresh S 2003 Acta Mater. 51 5159Google Scholar

    [7]

    Wang Y M, Hamza A V, Ma E 2006 Acta Mater. 54 2715Google Scholar

    [8]

    Wei Y J, Bower A F, Gao H J 2008 Acta Mater. 56 1741Google Scholar

    [9]

    Zhang K, Weertman J R, Eastman J A 2005 Appl. Phys. Lett. 87 061921Google Scholar

    [10]

    Gianola D S, Petegem S V, Legros M, Swygenhovenet H V, Hemker K J 2006 Acta Mater. 54 2253Google Scholar

    [11]

    Rajagopalan J, Han J H, Saif M T A 2007 Science 315 1831Google Scholar

    [12]

    Rajagopalan J, Han J H, Saif M T A 2008 Scr. Mater. 59 921Google Scholar

    [13]

    Li X Y, Wei Y J, Yang W, Gao H J 2009 PNAS 106 16108Google Scholar

    [14]

    李晓雁 2014 金属学报 50 219

    Li X Y 2014 Aata Metal. Sin. 50 219

    [15]

    Frøseth A G, Derlet P M, Swygenhoven H V 2006 Scr. Mater. 54 477

    [16]

    Cao F H, Wang Y J, Dai L H 2020 Acta Mater. 194 283Google Scholar

    [17]

    Lee S B, Vaid A, Im J, Kim B S, Prakashet A, Guénolé J L, Kiener D, Bitzek E 2020 Nat. Commun. 11 2367Google Scholar

    [18]

    Lai M, Zhang X D, Fang F Z 2013 Nanoscale Res. Lett. 8 353Google Scholar

    [19]

    Kizuka T 1998 Phys. Rev. B 57 11158Google Scholar

    [20]

    Zhang L F, Zhou H F, Qu S X 2012 Nanoscale Res. Lett. 7 1Google Scholar

    [21]

    Wang Z J, Li Q J, Li Y, Huang L C, Lu L, Dao M, Li J, Ma E, Suresh S, Shan Z W 2017 Nat. Commun. 1108 1

    [22]

    Kou Z D, Yang Y Q, Yang L X 2018 Scr. Mater. 145 28Google Scholar

    [23]

    Yamakov V, Wolf D, Phillpot S R 2003 Acta Mater. 51 4135Google Scholar

    [24]

    Zhang M, Chen J, Xu T. J 2020 Appl. Phys. 127 125303Google Scholar

    [25]

    Liao X Z, Zhou F, Lavernia E J, Srinivasan S G, Baskes M L, He D W, Zhu Y T 2003 Appl. Phys. Lett. 83 632Google Scholar

    [26]

    Huang C, Peng X H, Yang B, Zhao Y B, Weng S Y, Fu T 2017 Nanomaterials 7 375Google Scholar

    [27]

    Gravell J D, Ryu I 2020 Acta Mater. 190 58Google Scholar

    [28]

    Xiang H G, Li H T, Fu T 2017 Acta Mater. 138 131Google Scholar

    [29]

    Cui Y H, Li H T, Xiang H G, Peng X H 2019 Appl. Surf. Sci. 466 757Google Scholar

    [30]

    Guo J, Chen J J, Wang Y Q 2020 Ceram. Int. 46 12686Google Scholar

    [31]

    Stukowski 2009 Model Simul. Mater. S C 18 015012

    [32]

    Foiles S M, Baskes M I, Daw M S 1988 Phys. Rev. B 33 7983

    [33]

    Zhu Y, Ma H T, Fan H 2018 Machine Tool and Hydraulics 46 21

    [34]

    Morse P M 1929 Phys. R 34 57Google Scholar

    [35]

    Qian Y, Shang F L, Wan Q 2018 J. Appl. Phys. 24 115102

    [36]

    Goel S, Beake B, Chan C W, Faisal N H, Dunne N 2015 Mater. Sci. Eng. A 627 249Google Scholar

    [37]

    Fan X, Rui Z, Cao H 2019 Materials 12 770Google Scholar

  • [1] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [2] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [3] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究. 物理学报, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [4] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [5] 陈晶晶. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211305
    [6] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [7] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [8] 胡兴健, 郑百林, 杨彪, 余金桂, 贺鹏飞, 岳珠峰. 初始压入位置对Ni基单晶合金纳米压痕影响研究. 物理学报, 2015, 64(7): 076201. doi: 10.7498/aps.64.076201
    [9] 胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰. 考虑相界效应的Ni基单晶合金纳米压痕模拟. 物理学报, 2014, 63(17): 176201. doi: 10.7498/aps.63.176201
    [10] 汪志刚, 黄娆, 文玉华. Au-Pd共晶纳米粒子熔化行为的分子动力学研究. 物理学报, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [11] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [12] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟. 物理学报, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [13] 陈谷然, 宋超, 徐骏, 王旦清, 徐岭, 马忠元, 李伟, 黄信凡, 陈坤基. 脉冲激光晶化超薄非晶硅膜的分子动力学研究. 物理学报, 2010, 59(8): 5681-5686. doi: 10.7498/aps.59.5681
    [14] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究. 物理学报, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [15] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [16] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究. 物理学报, 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [17] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [18] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [19] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  3592
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-09-14
  • 上网日期:  2022-01-09
  • 刊出日期:  2022-01-20

/

返回文章
返回