[1] |
Lou Zheng-Kun, Sun Tao, He Wei, Yang Jian-Hua. Response property of a factional linear system under the base excitation. Acta Physica Sinica,
2016, 65(8): 084501.
doi: 10.7498/aps.65.084501
|
[2] |
Xue Kai-Jia, Wang Cong-Qing. Sliding mode control of fractional order chaotic system based on an online error correction adaptive SVR. Acta Physica Sinica,
2015, 64(7): 070502.
doi: 10.7498/aps.64.070502
|
[3] |
Liu Fei, Liu Bin, Liu Hao-Ran. Cycle response characteristics research on a class of piecewise nonlinear elastic and damping double constraint system. Acta Physica Sinica,
2015, 64(12): 124601.
doi: 10.7498/aps.64.124601
|
[4] |
Yang Ye-Hong, Xiao Jian, Ma Zhen-Zhen. Modified function projective synchronization for a class of partially linear fractional order chaotic systems. Acta Physica Sinica,
2013, 62(18): 180505.
doi: 10.7498/aps.62.180505
|
[5] |
Yang Jian-Hua, Zhu Hua. The response property of one kind of factional-order linear system excited by different periodical signals. Acta Physica Sinica,
2013, 62(2): 024501.
doi: 10.7498/aps.62.024501
|
[6] |
Li Li-Xiang, Peng Hai-Peng, Luo Qun, Yang Yi-Xian, Liu Zhe. Problem and analysis of stability decidable theory for a class of fractional order nonlinear system. Acta Physica Sinica,
2013, 62(2): 020502.
doi: 10.7498/aps.62.020502
|
[7] |
Ren Li-Na, Liu Fu-Cai, Jiao Xiao-Hong, Li Jun-Yi. Hamiltonian model-based H control of chaos in permanent magnet synchronous generators for wind power systems. Acta Physica Sinica,
2012, 61(6): 060506.
doi: 10.7498/aps.61.060506
|
[8] |
Wu Zhi-Qiang, Zhang Zhen-Hua, Hao Ying. Constrained bifurcations of the system with double-loop bilinear hysteresis. Acta Physica Sinica,
2011, 60(12): 120503.
doi: 10.7498/aps.60.120503
|
[9] |
Mo Jia-Qi, Wen Zhao-Hui. Solitary wave series solution for generalized (3+1)-dimensional nonlinear Burgers system. Acta Physica Sinica,
2010, 59(12): 8311-8315.
doi: 10.7498/aps.59.8311
|
[10] |
Ding Guang-Tao. New kind of inverse problems of Noether’s theory for Hamiltonian systems. Acta Physica Sinica,
2010, 59(3): 1423-1427.
doi: 10.7498/aps.59.1423
|
[11] |
Zhang Ruo-Xun, Yang Shi-Ping, Liu Yong-Li. Synchronization of fractional-order unified chaotic system via linear control. Acta Physica Sinica,
2010, 59(3): 1549-1553.
doi: 10.7498/aps.59.1549
|
[12] |
Chen Xiang-Rong, Liu Chong-Xin, Li Yong-Xun. Nonlinear observer based full-state projective synchronization for a class of fractional-order chaotic system. Acta Physica Sinica,
2008, 57(3): 1453-1457.
doi: 10.7498/aps.57.1453
|
[13] |
Wang Yong-Long, Li Zi-Ping, Xu Chang-Tan. Fractional spins and fractional statistics of composite Boson field. Acta Physica Sinica,
2006, 55(5): 2149-2151.
doi: 10.7498/aps.55.2149
|
[14] |
Zhang Ying, Li Ai-Min, Li Zi-Ping. Fractional spin in the O(3) nonlinear sigma model with Hopf and Maxwell-Chern-Simons terms. Acta Physica Sinica,
2005, 54(1): 43-46.
doi: 10.7498/aps.54.43
|
[15] |
Zhang Yi. Effects of non-conservative forces and nonholonomic constraints on Lie symmetrie s of a Hamiltonian system. Acta Physica Sinica,
2003, 52(6): 1326-1331.
doi: 10.7498/aps.52.1326
|
[16] |
Li Ai-Min, Zhang Xiao-Pei, Li Zi-Ping. A counterexample of Dirac's conjecture for a system with a higher-order singular Lagrangian. Acta Physica Sinica,
2003, 52(5): 1057-1060.
doi: 10.7498/aps.52.1057
|
[17] |
Li Ai-Min, Jiang Jin-Huan, Li Zi-Ping. . Acta Physica Sinica,
2002, 51(5): 943-945.
doi: 10.7498/aps.51.943
|
[18] |
ZHANG YI, XUE YUN. LIE SYMMETRIES OF CONSTRAINED HAMILTONIAN SYSTEM WITH THE SECOND TYPE OF CONSTRAINTS . Acta Physica Sinica,
2001, 50(5): 816-819.
doi: 10.7498/aps.50.816
|
[19] |
YU BAO-LONG, BU HONG-JIAN, WU XIAO-CHUN, ZHANG GUI-LAN, TANG GUO-QING, CHEN WEN-JU, ZHU CONG-SHAN, GAN FU-XI. NONLINEAR OPTICAL PROPERTIES OF In2O3 NANOPARTICLES. Acta Physica Sinica,
1999, 48(2): 320-325.
doi: 10.7498/aps.48.320
|
[20] |
DING XIANG-MAO, WANG YAN-SHEN, HOU BO-YU. POISSON-LIE STRUCTURE OF LAX-PAIR MATRIX OF INTEGRABLE CLASSICAL NON-LINEAR SIGMA MODEL UNDER THE MOVING FRAME. Acta Physica Sinica,
1994, 43(1): 1-6.
doi: 10.7498/aps.43.1
|