Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Response property of a factional linear system under the base excitation

Lou Zheng-Kun Sun Tao He Wei Yang Jian-Hua

Citation:

Response property of a factional linear system under the base excitation

Lou Zheng-Kun, Sun Tao, He Wei, Yang Jian-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We investigate the response property of a linear system that is excited by the base excitation. The linear system contains the ordinary damping or the fractional-order damping. In our studies, the base excitation is in the harmonic form or in the general periodic form. When the base excitation is in the harmonic form, we obtain the dynamic transfer coefficient by the undetermined coefficient method. When the base excitation is in the general periodic form, we first expand the excitation into the Fourier series, then, according to the linear superposition principle, we obtain the dynamic transfer coefficient that is induced by each harmonic component in the excitation. By expanding the general periodic excitation into the Fourier series, we can solve the non-differentiable problem that is induced by the periodic base excitation for the numerical calculations. Based on the Grnwald-Letnikov definition, the discretization formula for the fractional-order system is obtained explicitly. The analytical results are in good agreement with the numerical simulations, which verifies the validity of the analytical results. Both the analytical and the numerical results show that the dynamic transfer coefficient depends on the fractional-order of the damping closely. The dynamic transfer coefficient can be controlled by tuning the value of the fractional-order. For the general periodic excitation, when the frequency is fixed, the dynamic transfer coefficient that is induced by the high-order harmonic component may be stronger than that induced by the low-order harmonic component in the base excitation. Hence, the effect of the high-order harmonic component in the excitation cannot be ignored although its amplitude is small. Further, when the base excitation is in the full sine form, or the square form, or the triangular form, the response property of the system can be described by center frequency, resonance peak, cutoff frequency, and the filter bandwidth. For a fixed fractional-order, the center frequencies of each order corresponding to the response, obtained by the three kinds of the periodic base excitations mentioned above, are identical. However, the corresponding resonance peaks are different. The resonance peak and the filter bandwidth are both maximal when the base excitation is in the square form. The resonance peak and the filter bandwidth are both minimal when the base excitation is in the triangular form. We believe that our results are useful for solving the vibration problem in the engineering field such as the vibration isolation and the vibration control.
      Corresponding author: Yang Jian-Hua, jianhuayang@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51305441) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
    [1]

    Ortigueira M D 2008 IEEE Circuits Syst. Mag. 8 19

    [2]

    Achar B N, Hanneken J, Clarke T 2002 Physica A 309 275

    [3]

    Deng W H, Li C P 2008 Phys. Lett. A 372 401

    [4]

    Deng W H 2007 J. Comput. Phys. 227 1510

    [5]

    Shen Y, Yang S, Xing H, Ma H 2012 Int. J. NonLin. Mech. 47 975

    [6]

    Shen Y, Yang S, Xing H, Gao G 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3092

    [7]

    Shen Y, Yang S, Sui C 2014 Chaos Soliton Fract. 67 94

    [8]

    Rostami M, Haeri M 2014 Signal Process. 107 361

    [9]

    Litak G, Borowiec M 2014 Nonlinear Dynam. 77 681

    [10]

    Yang J H, Zhu H 2012 Chaos 22 149

    [11]

    Yang J H, Zhu H 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1316

    [12]

    Yang J H, Sanjuan Miguel A F, Tian F, Yang H F 2015 Int. J. Bifurcat. Chaos 25 1550023

    [13]

    Yang J H, Sanjuan Miguel A F, Xiang W, Zhu H 2013 Pramana 81 943

    [14]

    Yang J H, Zhu H 2012 Acta Phys. Sin. 62 024501 (in Chinese) [杨建华, 朱华 2012 物理学报 62 024501]

    [15]

    Chen L, Li H, Li Z, Zhu W 2013 Sci. China: Phys. Mech. Astron. 43 670

    [16]

    Chen L C, Zhu W Q 2009 Nonlinear Dynam. 56 231

    [17]

    Chen L C, Zhu W Q 2009 Acta Mech. 207 109

    [18]

    Xu Y, Li Y, Liu D 2014 J Comput. Nonlin. Dyn. 9 031015

    [19]

    Baleanu D, Magin R L, Bhalekar S, Daftardar-Gejji V 2015 Commun. Nonlinear Sci. Numer. Simulat. 25 41

    [20]

    Monje C A, Chen Y Q, Vinagre B M, Xue D, Feliu V 2010 Fractional-order Systems and Controls (London: Springer) p11

    [21]

    Chen W, Sun H G, Li X C 2010 Fractional Derivative Modeling in Mechanics and Engineering (Beijing: Science Press) pp12-14 (in Chinese) [陈文, 孙洪广, 李西成 2010 力学与工程问题中的分数阶导数建模 (北京: 科学出版社) pp12-14]

    [22]

    Zhou J L, Pu Y F, Liao K 2010 Principle of Fractional Calculus and its Applications to Advanced Signal Processing (Beijing: Science Press) p54 (in Chinese) [周激流, 蒲亦非, 廖科 2010 分数阶微积分原理及其在现代信号分析与处理中的应用 (北京: 科学出版社) p54]

    [23]

    Yu Y J, Wang Z H 2015 Acta Phys. Sin. 64 238401 (in Chinese) [俞亚娟, 王在华 2015 物理学报 64 238401]

    [24]

    Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) p88

    [25]

    Li C, Zhang F, Kurths J, Zeng F 2013 Philos. T. Roy. Soc. A 371 20120156

    [26]

    Cao J, Ma C, Xie H, Jiang Z 2010 ASME J. Comput. Nonlin. Dyn. 5 041012

    [27]

    Balachandran B, Magrab E B 2008 Vibrations (Australia: Cengage Learning) pp210-212

  • [1]

    Ortigueira M D 2008 IEEE Circuits Syst. Mag. 8 19

    [2]

    Achar B N, Hanneken J, Clarke T 2002 Physica A 309 275

    [3]

    Deng W H, Li C P 2008 Phys. Lett. A 372 401

    [4]

    Deng W H 2007 J. Comput. Phys. 227 1510

    [5]

    Shen Y, Yang S, Xing H, Ma H 2012 Int. J. NonLin. Mech. 47 975

    [6]

    Shen Y, Yang S, Xing H, Gao G 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3092

    [7]

    Shen Y, Yang S, Sui C 2014 Chaos Soliton Fract. 67 94

    [8]

    Rostami M, Haeri M 2014 Signal Process. 107 361

    [9]

    Litak G, Borowiec M 2014 Nonlinear Dynam. 77 681

    [10]

    Yang J H, Zhu H 2012 Chaos 22 149

    [11]

    Yang J H, Zhu H 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1316

    [12]

    Yang J H, Sanjuan Miguel A F, Tian F, Yang H F 2015 Int. J. Bifurcat. Chaos 25 1550023

    [13]

    Yang J H, Sanjuan Miguel A F, Xiang W, Zhu H 2013 Pramana 81 943

    [14]

    Yang J H, Zhu H 2012 Acta Phys. Sin. 62 024501 (in Chinese) [杨建华, 朱华 2012 物理学报 62 024501]

    [15]

    Chen L, Li H, Li Z, Zhu W 2013 Sci. China: Phys. Mech. Astron. 43 670

    [16]

    Chen L C, Zhu W Q 2009 Nonlinear Dynam. 56 231

    [17]

    Chen L C, Zhu W Q 2009 Acta Mech. 207 109

    [18]

    Xu Y, Li Y, Liu D 2014 J Comput. Nonlin. Dyn. 9 031015

    [19]

    Baleanu D, Magin R L, Bhalekar S, Daftardar-Gejji V 2015 Commun. Nonlinear Sci. Numer. Simulat. 25 41

    [20]

    Monje C A, Chen Y Q, Vinagre B M, Xue D, Feliu V 2010 Fractional-order Systems and Controls (London: Springer) p11

    [21]

    Chen W, Sun H G, Li X C 2010 Fractional Derivative Modeling in Mechanics and Engineering (Beijing: Science Press) pp12-14 (in Chinese) [陈文, 孙洪广, 李西成 2010 力学与工程问题中的分数阶导数建模 (北京: 科学出版社) pp12-14]

    [22]

    Zhou J L, Pu Y F, Liao K 2010 Principle of Fractional Calculus and its Applications to Advanced Signal Processing (Beijing: Science Press) p54 (in Chinese) [周激流, 蒲亦非, 廖科 2010 分数阶微积分原理及其在现代信号分析与处理中的应用 (北京: 科学出版社) p54]

    [23]

    Yu Y J, Wang Z H 2015 Acta Phys. Sin. 64 238401 (in Chinese) [俞亚娟, 王在华 2015 物理学报 64 238401]

    [24]

    Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) p88

    [25]

    Li C, Zhang F, Kurths J, Zeng F 2013 Philos. T. Roy. Soc. A 371 20120156

    [26]

    Cao J, Ma C, Xie H, Jiang Z 2010 ASME J. Comput. Nonlin. Dyn. 5 041012

    [27]

    Balachandran B, Magrab E B 2008 Vibrations (Australia: Cengage Learning) pp210-212

  • [1] Wu Chao-Jun, Fang Li-Yi, Yang Ning-Ning. Dynamic analysis and experiment of chaotic circuit of non-homogeneous fractional memristor with bias voltage source. Acta Physica Sinica, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] Peng Hao, Ren Rui-Bin, Zhong Yang-Fan, Yu Tao. Stochastic resonance of fractional-order coupled system excited by trichotomous noise. Acta Physica Sinica, 2022, 71(3): 030502. doi: 10.7498/aps.71.20211272
    [3] Research on Stochastic Resonance of Fractional-Order Coupled System Excited by Trichotomous Noise. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211272
    [4] Xu Xin-Xin, Zhang Yi. A new type of adiabatic invariant for fractional order non-conservative Lagrangian systems. Acta Physica Sinica, 2020, 69(22): 220401. doi: 10.7498/aps.69.20200488
    [5] Yu Bo, He Qiu-Yan, Yuan Xiao. Scaling fractal-lattice franctance approximation circuits of arbitrary order and irregular lattice type scaling equation. Acta Physica Sinica, 2018, 67(7): 070202. doi: 10.7498/aps.67.20171671
    [6] Hu Chuan, Li Zhi-Jun, Chen Xi-Xi. Dynamics analysis and circuit implementation of fractional-order Chua's system with negative parameters. Acta Physica Sinica, 2017, 66(23): 230502. doi: 10.7498/aps.66.230502
    [7] Wen Shao-Fang, Shen Yong-Jun, Yang Shao-Pu. Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay. Acta Physica Sinica, 2016, 65(9): 094502. doi: 10.7498/aps.65.094502
    [8] He Qiu-Yan, Yuan Xiao. Carlson iterating and rational approximation of arbitrary order fractional calculus operator. Acta Physica Sinica, 2016, 65(16): 160202. doi: 10.7498/aps.65.160202
    [9] Liu Shi-Da, Fu Zun-Tao, Liu Shi-Kuo. Fractional derivative dynamics of intermittent turbulence. Acta Physica Sinica, 2014, 63(7): 074701. doi: 10.7498/aps.63.074701
    [10] He Shao-Bo, Sun Ke-Hui, Wang Hui-Hai. Solution of the fractional-order chaotic system based on Adomian decomposition algorithm and its complexity analysis. Acta Physica Sinica, 2014, 63(3): 030502. doi: 10.7498/aps.63.030502
    [11] Ma Jing-Jie, Xia Hui, Tang Gang. Dynamic scaling behavior of the space-fractional stochastic growth equation with correlated noise. Acta Physica Sinica, 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [12] Yang Jian-Hua, Zhu Hua. The response property of one kind of factional-order linear system excited by different periodical signals. Acta Physica Sinica, 2013, 62(2): 024501. doi: 10.7498/aps.62.024501
    [13] Chen Wei-Dong, Liu Yao-Long, Zhu Qi-Guang, Chen Ying. Fuzzy adaptive extended Kalman filter SLAM algorithm based on the improved wild geese PSO algorithm. Acta Physica Sinica, 2013, 62(17): 170506. doi: 10.7498/aps.62.170506
    [14] Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun. Dynamical analysis of linear SDOF oscillator with fractional-order derivative (Ⅱ). Acta Physica Sinica, 2012, 61(15): 150503. doi: 10.7498/aps.61.150503
    [15] Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative. Acta Physica Sinica, 2012, 61(11): 110505. doi: 10.7498/aps.61.110505
    [16] Wang Fa-Qiang, Ma Xi-Kui. Fractional order modeling and simulation analysis of Boost converter in continuous conduction mode operation. Acta Physica Sinica, 2011, 60(7): 070506. doi: 10.7498/aps.60.070506
    [17] Liu Yong, Xie Yong. Dynamical characteristics of the fractional-order FitzHugh-Nagumo model neuron and its synchronization. Acta Physica Sinica, 2010, 59(3): 2147-2155. doi: 10.7498/aps.59.2147
    [18] Wang Ming-Jun, Wang Xing-Yuan. Dynamic analysis of the fractional order Newton-Leipnik system. Acta Physica Sinica, 2010, 59(3): 1583-1592. doi: 10.7498/aps.59.1583
    [19] Sun Ke-Hui, Yang Jing-Li, Ding Jia-Feng, Sheng Li-Yuan. Circuit design and implementation of Lorenz chaotic system with one parameter. Acta Physica Sinica, 2010, 59(12): 8385-8392. doi: 10.7498/aps.59.8385
    [20] Chang Fu-Xuan, Chen Jin, Huang Wei. Anomalous diffusion and fractional advection-diffusion equation. Acta Physica Sinica, 2005, 54(3): 1113-1117. doi: 10.7498/aps.54.1113
Metrics
  • Abstract views:  6225
  • PDF Downloads:  239
  • Cited By: 0
Publishing process
  • Received Date:  14 August 2015
  • Accepted Date:  02 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回