Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Scaling fractal-lattice franctance approximation circuits of arbitrary order and irregular lattice type scaling equation

Yu Bo He Qiu-Yan Yuan Xiao

Citation:

Scaling fractal-lattice franctance approximation circuits of arbitrary order and irregular lattice type scaling equation

Yu Bo, He Qiu-Yan, Yuan Xiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Although Carlson fractal-lattice fractance approximation circuit belongs to the ideal approximation, it can only have operational performance of fractional operator of negative half-order. When series of this circuit increases, the approximation benefit decreases. Even though the fractance approximation circuit of -1/2n (n is an integer greater than or equal to 2) order can be obtained by using nested structures, the structure of this kind of circuit is complicated and fractional operation of arbitrary order cannot be achieved by this circuit. The Liu-Kaplan fractal-chain fractance class, which can be regarded as scaling extension circuits of the Oldham fractal-chain fractance class, has high approximation benefit and can realize operational performance of arbitrary fractional order. Based on analogy, arbitrary order scaling fractal-lattice franctance approximation circuits of high approximation benefit and corresponding lattice type scaling equation can be achieved through respectively making scaling extension to the Carlson fractal-lattice franctance approximation circuit and its normalized iterating equation. There exists the possibility to verify the validity of this scaling extension and scaling fractal-lattice fractance approximation circuits with operational performance of arbitrary order in different ways, including the transmission parameter matrix algorithm, the iterating matrix algorithm and the coefficient vector iterating algorithm. Arbitrary order scaling fractal-lattice franctance approximation circuits can be realized by adjusting both the resistance progressive-ratio and the capacitance progressive-ratio parameters. The approximation benefit of scaling fractal-lattice franctance approximation circuit of arbitrary order is determined by both the scaling factor and the circuit series. The introduced extension benefit function is to be used in performance analyses. Besides, performance comparisons have been made between the Carlson fractal-lattice franctance approximation circuit of five series and the scaling fractal-lattice franctance approximation circuit of negative half-order. With the increasing of the value of the scaling factor, approximation efficiency of the scaling fractal-lattice franctance approximation circuits gradually increases, which are higher than those of the Carlson fractal-lattice franctance approximation circuits. The Carlson fractal-lattice franctance approximation circuit and the scaling fractal-lattice franctance approximation circuit of five series are designed to be used in the active differential operational circuit of half-order to construct experimental testing systems. The approximation performances of both circuits are investigated from the aspects of order-frequency characteristic and F-frequency characteristic. The approximation performance of the scaling fractal-lattice franctance approximation circuit outperforms that of the Carlson fractal-lattice franctance approximation circuit. As the successful application case, the active differential operational circuit designed by the scaling fractal-lattice franctance approximation circuit is used to do the half-order calculus of triangular and square wave signals. This paper is merely an incipient work on scaling fractal-lattice franctance approximation circuits of arbitrary order and irregular lattice type scaling equations.
      Corresponding author: Yuan Xiao, 653381180@qq.com
    [1]

    Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp3-15 (in Chinese) [袁晓 2015 分抗逼近电路之数学原理(北京:科学出版社) 第315页]

    [2]

    He Q Y, Yuan X 2016 Acta Phys. Sin 65 160202 (in Chinese) [何秋燕, 袁晓 2016 物理学报 65 160202]

    [3]

    He Q Y, Yu B, Yuan X 2017 Chin. Phys. B 26 040202

    [4]

    Shang D S, Chai Y S, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B 24 109

    [5]

    Shen J X, Cong J Z, Chai Y S, Shang D S, Shen S P, Zhai K, Tian Y, Sun Y 2016 Phys. Rev. Appl. 6 021001

    [6]

    Carlson G E 1960 M. S. Dissertation (Kansas State: Kansas State University)

    [7]

    Pu Y F, Yuan X 2016 IEEE Access 4 1

    [8]

    Yuan X, Feng G Y 2015 Proceedings of the 26th Academic Annual Conference of Circuits and Systems Branch, Chinese Institute of Electronics Chang Sha, China, October 23-26, 2015 p295 [袁晓, 冯国英 2015 中国电子学会电路与系统分会第二十六届学术年会论文集 中国长沙, 2015 年10月23日26日 第295页]

    [9]

    Yuan Z, Yuan X 2017 Acta Electron. Sin. 45 2511 (in Chinese) [袁子, 袁晓 2017 电子学报 45 2511]

    [10]

    Han Q, Liu C X, Sun L, Zhu D R 2013 Chin. Phys. B 22 020502

    [11]

    Wang F Q, Ma X K 2013 Chin. Phys. B 22 030506

    [12]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 物理学报 61 110505]

    [13]

    Yang J H, Zhu H 2013 Acta Phys. Sin. 62 024501 (in Chinese) [杨建华, 朱华 2013 物理学报 62 024501]

    [14]

    Zhou H W, Wang C P, Duan Z Q, Zhang M, Liu J F 2012 Sci. Sin.: Phys. Mech. Astron. 42 310 (in Chinese) [周宏伟, 王春萍, 段志强, 张淼, 刘建锋 2012 中国科学: 物理学 力学 天文学 42 310]

    [15]

    Wu F, Liu J F, Bian Y, Zhou Z W 2014 J. Sichuan Univ. (Engineering Science Edition) 46 22 (in Chinese) [吴斐, 刘建锋, 边宇, 周志威 2014 四川大学学报 (工程科学版) 46 22]

    [16]

    Yu Y J, Wang Z H 2015 Acta Phys. Sin. 64 238401 (in Chinese) [俞亚娟, 王在华 2015 物理学报 64 238401]

    [17]

    Li H H, Chen D Y, Zhang H, Wang F F, Ba D D 2016 Mech. Syst. Signal Process. 80 414

    [18]

    Li H H, Chen D Y, Zhang H, Wu C Z, Wang X Y 2017 Appl. Energ. 185 244

    [19]

    Xu B B, Wang F F, Chen D Y, Zhang H 2016 Energ. Convers. Manag. 108 478

    [20]

    Tao L, Yuan X, Yi Z, Liu P P 2015 Sci. Tech. Eng. 15 81 (in Chinese) [陶磊, 袁晓, 易舟, 刘盼盼 2015 科学技术与工程 15 81]

    [21]

    Liu P P , Yuan X, Tao L, Yi Z 2016 J. Sichuan Univ. (Nat. Sci. Ed.) 53 353 (in Chinese) [刘盼盼, 袁晓, 陶磊, 易舟 2016 四川大学学报 (自然科学版) 53 353]

    [22]

    Yu B, Yuan X, Tao L 2015 J. Electr. Inf. Technol. 37 21 (in Chinese) [余波, 袁晓, 陶磊 2015 电子与信息学报 37 21]

    [23]

    Yuan X, Chen X D, Li Q L, Zhang S P, Jiang Y D, Yu J B 2002 Acta Electron. Sin. 30 769 (in Chinese) [袁晓, 陈向东, 李齐良, 张蜀平, 蒋亚东, 虞厥邦 2002 电子学报 30 769]

    [24]

    Yuan X, Zhang H Y, Yu J B 2004 Acta Electron. Sin. 32 1658 (in Chinese) [袁晓, 张红雨, 虞厥邦 2004 电子学报 32 1658]

    [25]

    Zhao Y Y, Yuan X, Teng X D, Wei Y H 2004 J. Sichuan Univ. (Eng. Sci. Ed.) 36 94 (in Chinese) [赵元英, 袁晓, 滕旭东, 魏永豪 2004 四川大学学报(工程科学版) 36 94]

  • [1]

    Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp3-15 (in Chinese) [袁晓 2015 分抗逼近电路之数学原理(北京:科学出版社) 第315页]

    [2]

    He Q Y, Yuan X 2016 Acta Phys. Sin 65 160202 (in Chinese) [何秋燕, 袁晓 2016 物理学报 65 160202]

    [3]

    He Q Y, Yu B, Yuan X 2017 Chin. Phys. B 26 040202

    [4]

    Shang D S, Chai Y S, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B 24 109

    [5]

    Shen J X, Cong J Z, Chai Y S, Shang D S, Shen S P, Zhai K, Tian Y, Sun Y 2016 Phys. Rev. Appl. 6 021001

    [6]

    Carlson G E 1960 M. S. Dissertation (Kansas State: Kansas State University)

    [7]

    Pu Y F, Yuan X 2016 IEEE Access 4 1

    [8]

    Yuan X, Feng G Y 2015 Proceedings of the 26th Academic Annual Conference of Circuits and Systems Branch, Chinese Institute of Electronics Chang Sha, China, October 23-26, 2015 p295 [袁晓, 冯国英 2015 中国电子学会电路与系统分会第二十六届学术年会论文集 中国长沙, 2015 年10月23日26日 第295页]

    [9]

    Yuan Z, Yuan X 2017 Acta Electron. Sin. 45 2511 (in Chinese) [袁子, 袁晓 2017 电子学报 45 2511]

    [10]

    Han Q, Liu C X, Sun L, Zhu D R 2013 Chin. Phys. B 22 020502

    [11]

    Wang F Q, Ma X K 2013 Chin. Phys. B 22 030506

    [12]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 物理学报 61 110505]

    [13]

    Yang J H, Zhu H 2013 Acta Phys. Sin. 62 024501 (in Chinese) [杨建华, 朱华 2013 物理学报 62 024501]

    [14]

    Zhou H W, Wang C P, Duan Z Q, Zhang M, Liu J F 2012 Sci. Sin.: Phys. Mech. Astron. 42 310 (in Chinese) [周宏伟, 王春萍, 段志强, 张淼, 刘建锋 2012 中国科学: 物理学 力学 天文学 42 310]

    [15]

    Wu F, Liu J F, Bian Y, Zhou Z W 2014 J. Sichuan Univ. (Engineering Science Edition) 46 22 (in Chinese) [吴斐, 刘建锋, 边宇, 周志威 2014 四川大学学报 (工程科学版) 46 22]

    [16]

    Yu Y J, Wang Z H 2015 Acta Phys. Sin. 64 238401 (in Chinese) [俞亚娟, 王在华 2015 物理学报 64 238401]

    [17]

    Li H H, Chen D Y, Zhang H, Wang F F, Ba D D 2016 Mech. Syst. Signal Process. 80 414

    [18]

    Li H H, Chen D Y, Zhang H, Wu C Z, Wang X Y 2017 Appl. Energ. 185 244

    [19]

    Xu B B, Wang F F, Chen D Y, Zhang H 2016 Energ. Convers. Manag. 108 478

    [20]

    Tao L, Yuan X, Yi Z, Liu P P 2015 Sci. Tech. Eng. 15 81 (in Chinese) [陶磊, 袁晓, 易舟, 刘盼盼 2015 科学技术与工程 15 81]

    [21]

    Liu P P , Yuan X, Tao L, Yi Z 2016 J. Sichuan Univ. (Nat. Sci. Ed.) 53 353 (in Chinese) [刘盼盼, 袁晓, 陶磊, 易舟 2016 四川大学学报 (自然科学版) 53 353]

    [22]

    Yu B, Yuan X, Tao L 2015 J. Electr. Inf. Technol. 37 21 (in Chinese) [余波, 袁晓, 陶磊 2015 电子与信息学报 37 21]

    [23]

    Yuan X, Chen X D, Li Q L, Zhang S P, Jiang Y D, Yu J B 2002 Acta Electron. Sin. 30 769 (in Chinese) [袁晓, 陈向东, 李齐良, 张蜀平, 蒋亚东, 虞厥邦 2002 电子学报 30 769]

    [24]

    Yuan X, Zhang H Y, Yu J B 2004 Acta Electron. Sin. 32 1658 (in Chinese) [袁晓, 张红雨, 虞厥邦 2004 电子学报 32 1658]

    [25]

    Zhao Y Y, Yuan X, Teng X D, Wei Y H 2004 J. Sichuan Univ. (Eng. Sci. Ed.) 36 94 (in Chinese) [赵元英, 袁晓, 滕旭东, 魏永豪 2004 四川大学学报(工程科学版) 36 94]

  • [1] Wu Chao-Jun, Fang Li-Yi, Yang Ning-Ning. Dynamic analysis and experiment of chaotic circuit of non-homogeneous fractional memristor with bias voltage source. Acta Physica Sinica, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] Zhang Yue-Rong, Yuan Xiao. Arbitrary-order high-operation constant fractance approximation circuit—lattice cascaded two-port network. Acta Physica Sinica, 2021, 70(4): 048401. doi: 10.7498/aps.70.20201465
    [3] Xu Xin-Xin, Zhang Yi. A new type of adiabatic invariant for fractional order non-conservative Lagrangian systems. Acta Physica Sinica, 2020, 69(22): 220401. doi: 10.7498/aps.69.20200488
    [4] He Qiu-Yan, Yuan Xiao. Carlson iterating and rational approximation of arbitrary order fractional calculus operator. Acta Physica Sinica, 2016, 65(16): 160202. doi: 10.7498/aps.65.160202
    [5] Lou Zheng-Kun, Sun Tao, He Wei, Yang Jian-Hua. Response property of a factional linear system under the base excitation. Acta Physica Sinica, 2016, 65(8): 084501. doi: 10.7498/aps.65.084501
    [6] Yang Yi, Tang Gang, Zhang Zhe, Xun Zhi-Peng, Song Li-Jian, Han Kui. Numerical investigations of dynamic behaviors of the restricted solid-on-solid model for Koch fractal substrates. Acta Physica Sinica, 2015, 64(13): 130501. doi: 10.7498/aps.64.130501
    [7] Shu Pan-Pan, Wang Wei, Tang Ming, Shang Ming-Sheng. Discriminability of node influence in flower fractal scale-free networks. Acta Physica Sinica, 2015, 64(20): 208901. doi: 10.7498/aps.64.208901
    [8] Xiong Jie, Chen Shao-Kuan, Wei Wei, Liu Shuang, Guan Wei. Multi-fractal detrended fluctuation analysis algorithm based identification method of scale-less range for multi-fractal charateristics of traffic flow. Acta Physica Sinica, 2014, 63(20): 200504. doi: 10.7498/aps.63.200504
    [9] He Shao-Bo, Sun Ke-Hui, Wang Hui-Hai. Solution of the fractional-order chaotic system based on Adomian decomposition algorithm and its complexity analysis. Acta Physica Sinica, 2014, 63(3): 030502. doi: 10.7498/aps.63.030502
    [10] Xia Bu-Gang, Zhang De-Hai, Meng Jin, Zhao Xin. Restrain the spurious resonance of second-order fractal frequency selective surface in MMW band. Acta Physica Sinica, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [11] Ma Jing-Jie, Xia Hui, Tang Gang. Dynamic scaling behavior of the space-fractional stochastic growth equation with correlated noise. Acta Physica Sinica, 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [12] Chen Wei-Dong, Liu Yao-Long, Zhu Qi-Guang, Chen Ying. Fuzzy adaptive extended Kalman filter SLAM algorithm based on the improved wild geese PSO algorithm. Acta Physica Sinica, 2013, 62(17): 170506. doi: 10.7498/aps.62.170506
    [13] Zhang Yong-Wei, Tang Gang, Han Kui, Xun Zhi-Peng, Xie Yu-Ying, Li Yan. Numerical simulations of dynamic scaling behavior of the etching model on fractal substrates. Acta Physica Sinica, 2012, 61(2): 020511. doi: 10.7498/aps.61.020511
    [14] Wang Fa-Qiang, Ma Xi-Kui. Fractional order modeling and simulation analysis of Boost converter in continuous conduction mode operation. Acta Physica Sinica, 2011, 60(7): 070506. doi: 10.7498/aps.60.070506
    [15] Sun Ke-Hui, Yang Jing-Li, Ding Jia-Feng, Sheng Li-Yuan. Circuit design and implementation of Lorenz chaotic system with one parameter. Acta Physica Sinica, 2010, 59(12): 8385-8392. doi: 10.7498/aps.59.8385
    [16] Chang Fu-Xuan, Chen Jin, Huang Wei. Anomalous diffusion and fractional advection-diffusion equation. Acta Physica Sinica, 2005, 54(3): 1113-1117. doi: 10.7498/aps.54.1113
    [17] Wang Li, Li Jian, Yang Ya-Jiang. Fractal structure of water molecular gels formedby the aggregation of organogelators. Acta Physica Sinica, 2004, 53(1): 160-164. doi: 10.7498/aps.53.160
    [18] Li Zhong-Xin, Jin Ya-Qiu. . Acta Physica Sinica, 2002, 51(7): 1403-1411. doi: 10.7498/aps.51.1403
    [19] HAN FEI, MA BEN-KUN. SCALING ANALYSIS OF DYNAMIC GROWTH. Acta Physica Sinica, 1996, 45(5): 826-831. doi: 10.7498/aps.45.826
    [20] LIU JIAN-MIN, GONG CHANG-DE. A JUSTIFICATION FOR THE SCALING OF THE THOM-SYSTEM. Acta Physica Sinica, 1982, 31(9): 1278-1284. doi: 10.7498/aps.31.1278
Metrics
  • Abstract views:  6016
  • PDF Downloads:  183
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2017
  • Accepted Date:  05 February 2018
  • Published Online:  05 April 2018

/

返回文章
返回