Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shock-induced phase transformation in nanocrystalline iron

Ma Wen Zhu Wen-Jun Zhang Ya-Lin Jing Fu-Qian

Citation:

Shock-induced phase transformation in nanocrystalline iron

Ma Wen, Zhu Wen-Jun, Zhang Ya-Lin, Jing Fu-Qian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The shock-induced phase transformation of nanocrystalline iron with different grain sizes is investigated by using molecular dynamic simulations. The critical shock stress for shock-induced phase transformation (from body-cubic centered α phase into hexagonal-close packed ε phase) of nanocrystalline irons is about 15 GPa. Under shock compression, the nanocrystalline irons first experience elastic deformation, then plastic deformation purely caused by grain boundaries, after that phase transformation nucleated mostly at the grain boundaries, and finally nucleation areas expanding into the entire samples. These processes can be reflected by the stress profile and the particle velocity profile, and also be distinguished by local atomic structures analyses in the corresponding areas. The microstructures of the shocked samples consist of grain boundary and hexagonal-closed packed new phase with the face-cubic centered atoms as the twin boundary. The grain size obviously influences the deformation of grain boundary and the microstructure after shock compression, and turns to change the profiles of stress or velocity. The mechanism is primarily analyzed.
    [1]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [2]

    Asay J R, Chhabildas L C 2003 High-Pressure Shock Compression of Solids Ⅵ edited by Horie Y, Davison L, Thadhani N N (New York: Springer)

    [3]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stölken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [4]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [5]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [6]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210

    [7]

    Cui X L, Zhu W J, He H L, Deng X L, Li Y J 2008 Phys. Rev. B 78 024115

    [8]

    Cui X L, Zhu W J, Deng X L, Li Y J, He H L 2006 Acta Phys. Sin. 55 5545 (in Chinese) [崔新林、祝文军、邓小良、李英骏、贺红亮 2006 物理学报 55 5545]

    [9]

    Shao J L, Qin C S, Wang P 2009 Acta Phys. Sin. 58 1936 (in Chinese) [邵建立、秦承森、王 裴 2009 物理学报 58 1936]

    [10]

    Shao J L, Qin C S, Wang P, Zhou H Q 2007 Acta Phys. Sin. 56 5389 (in Chinese) [邵建立、秦承森、王裴、周洪强 2007 物 理学报 56 5389] 〖11] Shao J L, Qin C S, Wang P, Zhou H Q 2008 Acta Phys. Sin. 57 1254 (in Chinese) [邵建立、秦承森、王 裴、周洪强 2008 物理学报 57 1254]

    [11]

    Ma W, Zhu W J, Jing F Q 2010 Appl. Phys. Lett. 97 121903

    [12]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马 文、祝文军、陈开果、经福谦 2011 物理学报 60 016107]

    [13]

    Chen D 1995 Comput. Mater. Sci. 3 327

    [14]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Jing F Q, Deng X L 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马 文、祝文军、张亚林、陈开果、邓小良、经福谦 2010 物理学报 59 4781]

    [15]

    Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767 (in Chinese) [邓小良、祝文军、贺红亮、伍登学、经福谦 2006 物理学报 55 4767]

    [16]

    Chen K G, Zhu W J, Ma W, Deng X L, He H L, Jing F Q 2010 Acta Phys. Sin. 59 1225(in Chinese) [陈开果、祝文军、马 文、邓小良、贺红亮、经福谦 2010 物理学报 59 1225]

    [17]

    Harrison P, Voter A F, Chen S P 1989 in Atomic Simulation of Materials Edited by Vitek V, Srolovitz D J (New York: Plenum Press)

    [18]

    Gupta Y M, Winey J M, Trivedi P B, Lalone B M, Smith R F, Eggert J H, Collins G W 2009 J. Appl. Phys. 105 036107

    [19]

    Wang H T, Yang W 2004 Adv. Mech. 34 314 (in Chinese) [王宏涛、杨 卫 2004 力学进展 34 314]

  • [1]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [2]

    Asay J R, Chhabildas L C 2003 High-Pressure Shock Compression of Solids Ⅵ edited by Horie Y, Davison L, Thadhani N N (New York: Springer)

    [3]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stölken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [4]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [5]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [6]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210

    [7]

    Cui X L, Zhu W J, He H L, Deng X L, Li Y J 2008 Phys. Rev. B 78 024115

    [8]

    Cui X L, Zhu W J, Deng X L, Li Y J, He H L 2006 Acta Phys. Sin. 55 5545 (in Chinese) [崔新林、祝文军、邓小良、李英骏、贺红亮 2006 物理学报 55 5545]

    [9]

    Shao J L, Qin C S, Wang P 2009 Acta Phys. Sin. 58 1936 (in Chinese) [邵建立、秦承森、王 裴 2009 物理学报 58 1936]

    [10]

    Shao J L, Qin C S, Wang P, Zhou H Q 2007 Acta Phys. Sin. 56 5389 (in Chinese) [邵建立、秦承森、王裴、周洪强 2007 物 理学报 56 5389] 〖11] Shao J L, Qin C S, Wang P, Zhou H Q 2008 Acta Phys. Sin. 57 1254 (in Chinese) [邵建立、秦承森、王 裴、周洪强 2008 物理学报 57 1254]

    [11]

    Ma W, Zhu W J, Jing F Q 2010 Appl. Phys. Lett. 97 121903

    [12]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马 文、祝文军、陈开果、经福谦 2011 物理学报 60 016107]

    [13]

    Chen D 1995 Comput. Mater. Sci. 3 327

    [14]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Jing F Q, Deng X L 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马 文、祝文军、张亚林、陈开果、邓小良、经福谦 2010 物理学报 59 4781]

    [15]

    Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767 (in Chinese) [邓小良、祝文军、贺红亮、伍登学、经福谦 2006 物理学报 55 4767]

    [16]

    Chen K G, Zhu W J, Ma W, Deng X L, He H L, Jing F Q 2010 Acta Phys. Sin. 59 1225(in Chinese) [陈开果、祝文军、马 文、邓小良、贺红亮、经福谦 2010 物理学报 59 1225]

    [17]

    Harrison P, Voter A F, Chen S P 1989 in Atomic Simulation of Materials Edited by Vitek V, Srolovitz D J (New York: Plenum Press)

    [18]

    Gupta Y M, Winey J M, Trivedi P B, Lalone B M, Smith R F, Eggert J H, Collins G W 2009 J. Appl. Phys. 105 036107

    [19]

    Wang H T, Yang W 2004 Adv. Mech. 34 314 (in Chinese) [王宏涛、杨 卫 2004 力学进展 34 314]

  • [1] Wang Jin-Ling, Zhang Kun, Lin Ji, Li Hui-Jun. Generation and modulation of shock waves in two-dimensional polariton condensates. Acta Physica Sinica, 2024, 73(11): 119601. doi: 10.7498/aps.73.20240229
    [2] Wang Xiao-Feng, Tao Gang, Xu Ning, Wang Peng, Li Zhao, Wen Peng. Molecular dynamics analysis of shock wave-induced nanobubble collapse in water. Acta Physica Sinica, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [3] Chen Xiao-Hui, Tan Bo-Zhong, Xue Tao, Ma Yun-Can, Jin Sai, Li Zhi-Jun, Xin Yue-Feng, Li Xiao-Ya, Li Jun. In situ observation of phase transition in polycrystalline under high-pressure high-strain-rate shock compression by X-ray diffraction. Acta Physica Sinica, 2020, 69(24): 246201. doi: 10.7498/aps.69.20200929
    [4] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [5] Wu You-Cheng, Liu Gao-Min, Dai Wen-Feng, Gao Zhi-Peng, He Hong-Liang, Hao Shi-Rong, Deng Jian-Jun. Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression. Acta Physica Sinica, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [6] Ma Wen, Lu Yan-Wen. Molecular dynamics investigation of shock front in nanocrystalline copper. Acta Physica Sinica, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [7] Wang Feng, Peng Xiao-Shi, Mei Lu-Sheng, Liu Shen-Ye, Jiang Xiao-Hua, Ding Yong-Kun. Shock timing experiment based on imaging velocity interferometer system for any reflector. Acta Physica Sinica, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [8] Yu Yin, Wang Wen-Qiang, Yang Jia, Zhang You-Jun, Jiang Dong-Dong, He Hong-Liang. Mesoscopic picture of fracture in porous brittle material under shock wave compression. Acta Physica Sinica, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [9] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Xu Tao, Ding Yong-Kun, Zhang Bao-Han. Shock experiment with sandwiched target in laser indirect-drive experiment. Acta Physica Sinica, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [10] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [11] Feng Ning-Bo, Gu Yan, Liu Yu-Sheng, Nie Heng-Chang, Chen Xue-Feng, Wang Gen-Shui, He Hong-Liang, Dong Xian-Lin. Porosity effects on depoling characteristics of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics under shock wave load. Acta Physica Sinica, 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [12] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [13] He An-Min, Shao Jian-Li, Qin Cheng-Sen, Wang Pei. Molecular dynamics study on the plastic behavior of monocrystalline copper under shock loading and unloading. Acta Physica Sinica, 2009, 58(8): 5667-5672. doi: 10.7498/aps.58.5667
    [14] Wang Hai-Yan, Zhu Wen-Jun, Deng Xiao-Liang, Song Zhen-Fei, Chen Xiang-Rong. Plastic deformation of helium bubble and void in aluminum under shock loading. Acta Physica Sinica, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [15] Yu Yu-Ying, Tan Hua, Hu Jian-Bo, Dai Cheng-Da, Chen Da-Nian, Wang Huan-Ran. Effective shear modulus in shock-compressed aluminum. Acta Physica Sinica, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [16] Yang Qi-Li, Zhang Guang-Cai, Xu Ai-Guo, Zhao Yan-Hong, Li Ying-Jun. Molecular dynamics simulation of shock-induced collapse in single crystal copper with nano-void inclusion. Acta Physica Sinica, 2008, 57(2): 940-946. doi: 10.7498/aps.57.940
    [17] Jiang Dong-Dong, Du Jin-Mei, Gu Yan, Feng Yu-Jun. Resistivity of PZT 95/5 ferroelectric ceramic under shock wave compression. Acta Physica Sinica, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [18] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [19] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] Chen Jun, Jing Fu-Qian, Zhang Jing-Lin, Chen Dong-Quan. . Acta Physica Sinica, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
Metrics
  • Abstract views:  9202
  • PDF Downloads:  932
  • Cited By: 0
Publishing process
  • Received Date:  21 December 2010
  • Accepted Date:  24 February 2011
  • Published Online:  05 March 2011

/

返回文章
返回