-
In radar, communication and other engineering applications, fast synchronization is needed because of the limited time of transmitting signal. However, the convergence rate of conventional synchronization is slow. To resolve the problem, a fast synchronization algorithm is proposed. According to Taylor expansion, nonlinear controller is designed to make the control matrix of error equation satisfy critical conditions for synchronization and further to optimize the control matrix, so fast synchronization can be achieved with only one step operation. In addition, given the practical engineering launches only one state variable, in this paper are take the typical continuous Duffing system and discrete Logistic system as examples and design the fast synchronization driven by only one variable. Finally, simulation results show that compared with common single coupling and OPCL synchronization, the proposed algorithm has fast convergence rate, strong anti-noise cap ability, and strong engineering practice significance.
-
Keywords:
- chaos /
- fast synchronization /
- anti-noise
[1] Alonge F, Branciforte M, Motta F 2009 IEEE Trans. Instrum. Meas. 58 318
[2] Pisarchik A N, Oliveras F R 2010 IEEE J. Quantum Electron 46 299
[3] Jiang F, Liu Z, Hu W, Bao B C 2010 Acta Phys. Sin. 59 116 (in Chinese) [蒋 飞、刘 中、胡 文、包伯成 2010 物理学报 59 116 ]
[4] Jin J X, Qiu S S 2010 Acta Phys. Sin. 59 792 (in Chinese) [晋建秀、丘水生 2010 物理学报 59 792 ]
[5] Xu Y C, Yang C L, Qu X D 2010 Chin. Phys. B 19 030516
[6] Jovic B, Unsworth C P 2010 Elec. Lett. 46 1
[7] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 94 821
[8] Cheng L, Zhang R Y, Peng J H 2003 Acta Phys. Sin. 52 536 (in Chinese) [程 丽、张入元、彭建华 2003 物理学报 52 536]
[9] Sorrentino F, Barlev G, Cohen A B, Edward O 2010 Chaos 20 013103
[10] Qin W Y, Su H, Yang Y F 2008 Acta Phys. Sin. 57 2704 (in Chinese) [秦卫阳、苏 浩、杨永峰 2008 物理学报 57 2704]
[11] Grosu I 1997 Phys. Rev. E 56 3709
[12] Grosu I, Banerjee R, Roy P K, Dana S K 2009 Phys. Rev. E 80 016212
[13] Yang C Y, Zhang Q L, Lin Y P, Zhou L N 2007 IEEE Trans. Circuits Syst. Regul. Pap. 54 1142
[14] Carroll T L 2005 Chaos 15 013901
[15] Elhadj Z, Sprott J C 2008 Chaos 18 023119
[16] Carroll T L 2001 IEEE Trans. Circ. Syst. Fund. Theor. Appl. 48 1519
-
[1] Alonge F, Branciforte M, Motta F 2009 IEEE Trans. Instrum. Meas. 58 318
[2] Pisarchik A N, Oliveras F R 2010 IEEE J. Quantum Electron 46 299
[3] Jiang F, Liu Z, Hu W, Bao B C 2010 Acta Phys. Sin. 59 116 (in Chinese) [蒋 飞、刘 中、胡 文、包伯成 2010 物理学报 59 116 ]
[4] Jin J X, Qiu S S 2010 Acta Phys. Sin. 59 792 (in Chinese) [晋建秀、丘水生 2010 物理学报 59 792 ]
[5] Xu Y C, Yang C L, Qu X D 2010 Chin. Phys. B 19 030516
[6] Jovic B, Unsworth C P 2010 Elec. Lett. 46 1
[7] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 94 821
[8] Cheng L, Zhang R Y, Peng J H 2003 Acta Phys. Sin. 52 536 (in Chinese) [程 丽、张入元、彭建华 2003 物理学报 52 536]
[9] Sorrentino F, Barlev G, Cohen A B, Edward O 2010 Chaos 20 013103
[10] Qin W Y, Su H, Yang Y F 2008 Acta Phys. Sin. 57 2704 (in Chinese) [秦卫阳、苏 浩、杨永峰 2008 物理学报 57 2704]
[11] Grosu I 1997 Phys. Rev. E 56 3709
[12] Grosu I, Banerjee R, Roy P K, Dana S K 2009 Phys. Rev. E 80 016212
[13] Yang C Y, Zhang Q L, Lin Y P, Zhou L N 2007 IEEE Trans. Circuits Syst. Regul. Pap. 54 1142
[14] Carroll T L 2005 Chaos 15 013901
[15] Elhadj Z, Sprott J C 2008 Chaos 18 023119
[16] Carroll T L 2001 IEEE Trans. Circ. Syst. Fund. Theor. Appl. 48 1519
Catalog
Metrics
- Abstract views: 8198
- PDF Downloads: 630
- Cited By: 0