-
For an inhomogeneous quantum magnetoplasma system in the atmospheric environment with density and temperature gradient, a two-dimensional nonlinear fluid dynamic perturbation equation is studied in the case where the collision frequency between ions and neutrals is small. The approximate solution of the potential in the dense astrophysical environment is obtained.
-
Keywords:
- plasma /
- solitary wave /
- approximate method
[1] Jung Y D 2001 Phys. Plasmas 8 3842
[2] Kremp D, Bornath T, Bonitz M, Schlanges M 1999 Phys. Rev. E 60 4725
[3] Shukla P K, Ali S 2005 Phys. Plasmas 12 114502
[4] Tang X Y, Shukla P K 2007 J. Phys. A: Math. Theor. 40 5921
[5] Tang X Y, Shukla P K 2008 Phys. Plasmas 15 023702
[6] Zhou T J, Yu R, Li H, Wang B 2008 Journal of Climate 21, 3833
[7] Zhou T J, Wu B, Wang B 2009 Journal of Climate 22 1159
[8] Zhou T J, Zou L 2010 Journal of Climate 23 6009
[9] Zhou T J, Zhang J 2011 Journal of Climate 24 1053
[10] Zhou T J, Wu B, Scaife A A, Bronnimann S 2009 Climate Dynamics 33 1051
[11] Zhou T J, Yu R, Zhang J, Drange H 2009 Journal of Climate 22 2199
[12] Haque Q, Mahmood S 2008 Phys. Plasmas 15 034501
[13] Masood W 2009 Phys. Lett. A 373 1455
[14] Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag AG)
[15] Ramos M 2009 J. Math. Anal. Appl. 352 246
[16] D'Aprile T, Pistoia A 2010 J. Diff. Eqs 248 556
[17] Faye L, Frenod E, Seck D 2011 Discrete Contin. Dyn. Sys. 29 1001
[18] Mo J Q 2009 Science in China G 39 568
[19] Mo J Q, Lin Y H, Lin W T 2010 Acta. Phys. Sin. 59 6701 (in Chinese) [莫嘉琪, 林一骅, 林万涛 2010 物理学报 59 6701]
[20] Mo J Q 2011 Acta. Phys. Sin. 60 090203 (in Chinese) [莫嘉琪 2011 物理学报 60 090203]
[21] Mo J Q 2010 Commun. Theor. Phys. 53 440
[22] Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 070205
[23] Masood W, Karim S, Shah H A, Siddiq M 2009 Phys. Plasmas 16 042108
[24] Mao J J, Yang J R, Li C Y 2012 Acta Phys. Sin. 61 020206 (in Chinese) [毛杰健, 杨建荣, 李超英 2012 物理学报 61 020206]
[25] Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York, CRC Press)
[26] de Jager E M, Jiang F R 1996 The Theory of Singular Perturbation (Amsterdam: North- Holland Publishing Co)
-
[1] Jung Y D 2001 Phys. Plasmas 8 3842
[2] Kremp D, Bornath T, Bonitz M, Schlanges M 1999 Phys. Rev. E 60 4725
[3] Shukla P K, Ali S 2005 Phys. Plasmas 12 114502
[4] Tang X Y, Shukla P K 2007 J. Phys. A: Math. Theor. 40 5921
[5] Tang X Y, Shukla P K 2008 Phys. Plasmas 15 023702
[6] Zhou T J, Yu R, Li H, Wang B 2008 Journal of Climate 21, 3833
[7] Zhou T J, Wu B, Wang B 2009 Journal of Climate 22 1159
[8] Zhou T J, Zou L 2010 Journal of Climate 23 6009
[9] Zhou T J, Zhang J 2011 Journal of Climate 24 1053
[10] Zhou T J, Wu B, Scaife A A, Bronnimann S 2009 Climate Dynamics 33 1051
[11] Zhou T J, Yu R, Zhang J, Drange H 2009 Journal of Climate 22 2199
[12] Haque Q, Mahmood S 2008 Phys. Plasmas 15 034501
[13] Masood W 2009 Phys. Lett. A 373 1455
[14] Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag AG)
[15] Ramos M 2009 J. Math. Anal. Appl. 352 246
[16] D'Aprile T, Pistoia A 2010 J. Diff. Eqs 248 556
[17] Faye L, Frenod E, Seck D 2011 Discrete Contin. Dyn. Sys. 29 1001
[18] Mo J Q 2009 Science in China G 39 568
[19] Mo J Q, Lin Y H, Lin W T 2010 Acta. Phys. Sin. 59 6701 (in Chinese) [莫嘉琪, 林一骅, 林万涛 2010 物理学报 59 6701]
[20] Mo J Q 2011 Acta. Phys. Sin. 60 090203 (in Chinese) [莫嘉琪 2011 物理学报 60 090203]
[21] Mo J Q 2010 Commun. Theor. Phys. 53 440
[22] Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 070205
[23] Masood W, Karim S, Shah H A, Siddiq M 2009 Phys. Plasmas 16 042108
[24] Mao J J, Yang J R, Li C Y 2012 Acta Phys. Sin. 61 020206 (in Chinese) [毛杰健, 杨建荣, 李超英 2012 物理学报 61 020206]
[25] Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York, CRC Press)
[26] de Jager E M, Jiang F R 1996 The Theory of Singular Perturbation (Amsterdam: North- Holland Publishing Co)
Catalog
Metrics
- Abstract views: 8745
- PDF Downloads: 446
- Cited By: 0