-
The cylindrical magnetic flux compression by explosive implosion (MC-1) is a kind of unique high energy density dynamic technique. A metal cylinder was driven by explosive implosion to compress the primary magnetic flux inside and an ultrahigh magnetic field was realized, which could be used to achieve effective isentropic compression of the sample. This technique has anigue characters like ultrahigh isentropic pressure and ultrahigh magnetic field, and would find wide usage in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun to make experiments on MC-1 since 2011 and a one-stage MC-1 set-up has been built up. The primary experimental results including the movement of liner and typical turn-around character in MC-1 experiment were observed and recorded. In the experiment a dynamic magnetic field of about 430T was obtained. The MC-1 process was numerically simulated by the one-dimensional MHD code and the simulations are in accord with experiments. Numerical simulations show that this technique has advantages in isentropic compression of materials as compared with normal implosion experiment.
-
Keywords:
- cylindrical implosion /
- magnetic flux compression /
- isentropic compression /
- ultrahigh magnetic field
[1] Herlach F, Knoepfel H 1965 Rev Sci. Instrum. 36 1088
[2] Fowler C M, Garn W B, Caird R S 1960 J. Appl. Phys. 31 588
[3] Hawke R S, Duerre D E, Huebel J G, Klapper H, Steinberg D J, Keeler R N 1972 J. Appl. Phys. 43 2734
[4] Pavlovskii A I, Dolotenko M I, Kolokolchikov N P 1984 Ultrahigh magnetic fields. Physics. Techniques. Eds. V M Titov, Shvetsov G A, Moscow: Nauka p19
[5] Boyko B A, Bykov A I, Dolotenko M I, Kolokol’chikov N P, Markevtsev I M, Tatsenko O M, Shuvalov A M 1998 proceeding of the VIIIth international conference on megagauss magnetic field generation and related topics, Edited by Hans J. Schneider-Muntau, p61
[6] Clark R G 1998 Proceeding of the VIIIth international conference on megagauss magnetic field generation and related topics, Edited by Hans J. Schneider-Muntau, p12
[7] Lindemuth I R 1997 IEEE Transactions on Plasma Science 25 534
[8] Boriskov G V, Belov S I, Bykov A I, DolotenkoN M I, Egorov I, Korshunov A S, Kudasov Y B, Makarov I V, Selemir V D, Filippov A V 2010 J. Low. Temp. Phys. 159 307
[9] Boriskov G V 2011 Contrib. Plasma Phys. 51 339
[10] Peng T, Gu C L 2004 Physics 33 570 (in Chinese) [彭涛, 辜承林 2004 物理 33 570]
[11] Zhang Y H 2009 Physics 38 320 (in Chinese) [张裕恒 2009 物理 38 320]
[12] Zeng S L, Ni F F, He J F, Zou S Y, Yan J 2011 Acta Phys. Sin. 60 043201 (in Chinese) [曾思良, 倪飞飞, 何建峰, 邹士阳, 颜君 2011 物理学报 60 043201]
[13] Gao Z S, Zhang X P, Wang D L, Qi Y P, Wang L, Chneg J S, Wang Q L, Ma Y W, Awaji S, Watanabe K 2011 Chin. Phys. Lett. 28 067402
[14] Wang G J, Private Communications [王桂吉, 私人通讯]
[15] Burgess T J Electrical Resistivity Model of Metals Pulsed Power Theory Division, Sandia National Laboratories Albuquerque, New Mexico, USA, SAND-86-1093C, 1986
[16] Sun C W, Wei Y Z, Zhou Z K 2000 Applied Detonation Physics (Beijing: National Defense Industry Press) p1 (in Chinese) [孙承纬, 卫玉章, 周之奎 2000 应用爆轰物理 (北京: 国防工业出版社 第1页]
-
[1] Herlach F, Knoepfel H 1965 Rev Sci. Instrum. 36 1088
[2] Fowler C M, Garn W B, Caird R S 1960 J. Appl. Phys. 31 588
[3] Hawke R S, Duerre D E, Huebel J G, Klapper H, Steinberg D J, Keeler R N 1972 J. Appl. Phys. 43 2734
[4] Pavlovskii A I, Dolotenko M I, Kolokolchikov N P 1984 Ultrahigh magnetic fields. Physics. Techniques. Eds. V M Titov, Shvetsov G A, Moscow: Nauka p19
[5] Boyko B A, Bykov A I, Dolotenko M I, Kolokol’chikov N P, Markevtsev I M, Tatsenko O M, Shuvalov A M 1998 proceeding of the VIIIth international conference on megagauss magnetic field generation and related topics, Edited by Hans J. Schneider-Muntau, p61
[6] Clark R G 1998 Proceeding of the VIIIth international conference on megagauss magnetic field generation and related topics, Edited by Hans J. Schneider-Muntau, p12
[7] Lindemuth I R 1997 IEEE Transactions on Plasma Science 25 534
[8] Boriskov G V, Belov S I, Bykov A I, DolotenkoN M I, Egorov I, Korshunov A S, Kudasov Y B, Makarov I V, Selemir V D, Filippov A V 2010 J. Low. Temp. Phys. 159 307
[9] Boriskov G V 2011 Contrib. Plasma Phys. 51 339
[10] Peng T, Gu C L 2004 Physics 33 570 (in Chinese) [彭涛, 辜承林 2004 物理 33 570]
[11] Zhang Y H 2009 Physics 38 320 (in Chinese) [张裕恒 2009 物理 38 320]
[12] Zeng S L, Ni F F, He J F, Zou S Y, Yan J 2011 Acta Phys. Sin. 60 043201 (in Chinese) [曾思良, 倪飞飞, 何建峰, 邹士阳, 颜君 2011 物理学报 60 043201]
[13] Gao Z S, Zhang X P, Wang D L, Qi Y P, Wang L, Chneg J S, Wang Q L, Ma Y W, Awaji S, Watanabe K 2011 Chin. Phys. Lett. 28 067402
[14] Wang G J, Private Communications [王桂吉, 私人通讯]
[15] Burgess T J Electrical Resistivity Model of Metals Pulsed Power Theory Division, Sandia National Laboratories Albuquerque, New Mexico, USA, SAND-86-1093C, 1986
[16] Sun C W, Wei Y Z, Zhou Z K 2000 Applied Detonation Physics (Beijing: National Defense Industry Press) p1 (in Chinese) [孙承纬, 卫玉章, 周之奎 2000 应用爆轰物理 (北京: 国防工业出版社 第1页]
Catalog
Metrics
- Abstract views: 6501
- PDF Downloads: 582
- Cited By: 0