-
A novel macro-cell-method (MCM) has been proposed, which is capable of accurately extracting the dispersion characteristics of 1D reciprocal microwave structures with finite periodicity. In practice a single macro-cell consists of multiple periodic unit cells, therefore the electromagnetic coupling effects among unit cells can be rigorously considered. The eigen transfer factors ξN and 1/ξN corresponding to the forward and backward Bloch waves can be calculated in terms of the Bloch theory. Imposing complex logarithmic operation to ξN, the attenuation constant α can be univocally determined, while multiple integer branches exist in the solution of the phase shift constant β due to the multiroots property of the complex logarithm function. The rational integer branch is uniquely selected by comparing β from the MCM with that extracted from the unwrapping-method (UPM), regarding β from the UPM as the approximate value. Compared to the conventional eigenmode-method, UPM and single-cell-method, the MCM has no requirements to the coupling intensity among unit cells comprising finitely periodic structures, and with such good generality and accuracy, the MCM can be an effective tool for characterizing 1D reciprocal finitely periodic structures, facilitating their wide applications in microwave engineering.
-
Keywords:
- macro-cell-method /
- Bloch analysis /
- dispersion characteristics
[1] Paulotto S, Baccarelli P, Frezza F, Jackson D R 2008 IEEE Trans. Micro. Theo. Tech. 56 2826
[2] Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Hoboken: John Wiley & Sons, Inc.) p115
[3] Mao S G, Chen M Y 2003 IEEE Trans. Micro. Theo. Tech. 50 2624
[4] Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104
[5] Szabó Z, Park G H, Hedge R, Li E P 2010 IEEE Trans. Micro. Theo. Tech. 58 2646
[6] Gong J Q, Chu Q X 2008 J. Electromagn. Waves Appl. 22 1985
[7] Pozar D M 2006 Microwave Engineering (3rd Ed.) (Beijing: Publishing House of Electronics Industry) p320 (in Chinese) [波扎 2006 微波工程 (第三版) (北京: 电子工业出版社) 第320页]
[8] Menzel C, Rockstuhl C, Paul T, Lederer F, Pertsch T 2008 Phys. Rev. B 77 195328
[9] Pyo S, Han S M, Baik J W, Kim Y S 2009 IEEE Trans. Micro. Theo. Tech. 57 2775
[10] Valerio G, Paulotto S, Baccarelli P, Burghignoli P, Galli A 2011 IEEE Trans. Micro. Theo. Tech. 59 2188
[11] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617
[12] Caloz C, Itoh T 2004 IEEE Trans. Micro. Theo. Tech. 52 980
[13] Gong J Q, Liang C H 2011 Acta Phys. Sin. 60 059204 (in Chinese) [龚建强, 梁昌洪 2011 物理学报 60 059204]
-
[1] Paulotto S, Baccarelli P, Frezza F, Jackson D R 2008 IEEE Trans. Micro. Theo. Tech. 56 2826
[2] Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Hoboken: John Wiley & Sons, Inc.) p115
[3] Mao S G, Chen M Y 2003 IEEE Trans. Micro. Theo. Tech. 50 2624
[4] Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104
[5] Szabó Z, Park G H, Hedge R, Li E P 2010 IEEE Trans. Micro. Theo. Tech. 58 2646
[6] Gong J Q, Chu Q X 2008 J. Electromagn. Waves Appl. 22 1985
[7] Pozar D M 2006 Microwave Engineering (3rd Ed.) (Beijing: Publishing House of Electronics Industry) p320 (in Chinese) [波扎 2006 微波工程 (第三版) (北京: 电子工业出版社) 第320页]
[8] Menzel C, Rockstuhl C, Paul T, Lederer F, Pertsch T 2008 Phys. Rev. B 77 195328
[9] Pyo S, Han S M, Baik J W, Kim Y S 2009 IEEE Trans. Micro. Theo. Tech. 57 2775
[10] Valerio G, Paulotto S, Baccarelli P, Burghignoli P, Galli A 2011 IEEE Trans. Micro. Theo. Tech. 59 2188
[11] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617
[12] Caloz C, Itoh T 2004 IEEE Trans. Micro. Theo. Tech. 52 980
[13] Gong J Q, Liang C H 2011 Acta Phys. Sin. 60 059204 (in Chinese) [龚建强, 梁昌洪 2011 物理学报 60 059204]
Catalog
Metrics
- Abstract views: 5781
- PDF Downloads: 684
- Cited By: 0