-
Mutual compensation property between electrooptic and magnetooptic modulations in a crystal with electrooptic and magnetooptic effects and its application to magnetooptic sensor are investigated theoretically and experimentally. Under the condition of light intensity modulation, electrooptic and magnetooptic modulation effects can compensate for each other, so that the transmitted light intensity through the crystal can be kept at a certain fixed value. Based on this mutual compensation property, a novel optical current (or magnetic field) sensor is proposed and demonstrated experimentally by use of a single bismuth germanate (Bi4Ge3O12, BGO) crystal. The optical sensing unit is composed mainly of two polarizers and a block of BGO crystal with the shape of parallelogram. The BGO crystal itself can produce an optical phase bias of π/2, and it can be used as both a current sensing element and an electrooptic compensator. The change of magnetooptic rotation angle through the crystal can be compensated in real time by the change of electrooptic phase retardation caused by the applied voltage, thus the closed-loop optical measurement of current (or magnetic field) can be achieved. The 50 Hz ac current within 5 A is measured experimentally. The required compensating ac voltage is about 21.2 V/A in root-mean-square value. Experimental data show a good linear relationship between measured current and compensating voltage, and the nonlinear error is less than 1.7%.
-
Keywords:
- electrooptic effect /
- magnetooptic effect /
- mutual compensation property /
- magnetooptic sensor
[1] Buhrer C F, Ho L, Zucker J 1964 Appl. Opt. 3 517
[2] Tabor W J, Chen F S 1969 J. Appl. Phys. 40 2760
[3] Li C S, Cui X 1998 Acta Photon. Sin. 27 122 (in Chinese) [李长胜, 崔翔 1998 光子学报 27 122]
[4] Rogers A J 1977 Opt. Laser Technol. 9 273
[5] Li C, Yoshino T 2002 Appl. Opt. 41 5391
[6] Li C, Cui X, Yoshino T 2003 J. Lightwave Technol. 21 1328
[7] Li C, Yoshino T 2012 Appl. Opt. 51 5119
[8] Li C S 2012 Acta Opt. Sin. 32 0123002 (in Chinese) [李长胜 2012 光学学报 32 0123002]
[9] Li C S, Zeng Z, He X L 2014 J. Optoelectron. Lasers 25 239 (in Chinese) [李长胜, 曾张, 何小玲 2014 光电子·激光 25 239 ]
[10] Li C, Zeng R 2014 IEEE Sensors J. 14 79
[11] Li C, Zeng Z, He X 2014 Infrared Laser Eng. 43 3036
[12] Wen F, Wu B J, Li Z, Li S B 2013 Acta Phys. Sin. 62 130701 (in Chinese) [文峰, 武保剑, 李智, 李述标 2013 物理学报 62 130701]
[13] Chen W, Wei Z, Guo L, Hou L Y, Wang G, Wang J D, Zhang Z M, Guo J P, Liu S H 2014 Chin. Phys. B 23 080304
[14] Xu J, Chen L X, Zheng G L, Wang H C, She W L 2007 Acta Phys. Sin. 56 4615 (in Chinese) [许婕, 陈理想, 郑国梁, 王红成, 佘卫龙 2007 物理学报 56 4615]
[15] Wang H Y, Jia W Y, Shen J X 1985 Acta Phys. Sin. 34 126 (in Chinese) [王焕元, 贾惟义, 沈建祥 1985 物理学报 34 126]
-
[1] Buhrer C F, Ho L, Zucker J 1964 Appl. Opt. 3 517
[2] Tabor W J, Chen F S 1969 J. Appl. Phys. 40 2760
[3] Li C S, Cui X 1998 Acta Photon. Sin. 27 122 (in Chinese) [李长胜, 崔翔 1998 光子学报 27 122]
[4] Rogers A J 1977 Opt. Laser Technol. 9 273
[5] Li C, Yoshino T 2002 Appl. Opt. 41 5391
[6] Li C, Cui X, Yoshino T 2003 J. Lightwave Technol. 21 1328
[7] Li C, Yoshino T 2012 Appl. Opt. 51 5119
[8] Li C S 2012 Acta Opt. Sin. 32 0123002 (in Chinese) [李长胜 2012 光学学报 32 0123002]
[9] Li C S, Zeng Z, He X L 2014 J. Optoelectron. Lasers 25 239 (in Chinese) [李长胜, 曾张, 何小玲 2014 光电子·激光 25 239 ]
[10] Li C, Zeng R 2014 IEEE Sensors J. 14 79
[11] Li C, Zeng Z, He X 2014 Infrared Laser Eng. 43 3036
[12] Wen F, Wu B J, Li Z, Li S B 2013 Acta Phys. Sin. 62 130701 (in Chinese) [文峰, 武保剑, 李智, 李述标 2013 物理学报 62 130701]
[13] Chen W, Wei Z, Guo L, Hou L Y, Wang G, Wang J D, Zhang Z M, Guo J P, Liu S H 2014 Chin. Phys. B 23 080304
[14] Xu J, Chen L X, Zheng G L, Wang H C, She W L 2007 Acta Phys. Sin. 56 4615 (in Chinese) [许婕, 陈理想, 郑国梁, 王红成, 佘卫龙 2007 物理学报 56 4615]
[15] Wang H Y, Jia W Y, Shen J X 1985 Acta Phys. Sin. 34 126 (in Chinese) [王焕元, 贾惟义, 沈建祥 1985 物理学报 34 126]
Catalog
Metrics
- Abstract views: 7785
- PDF Downloads: 503
- Cited By: 0