Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast polarization modulation of laser pulses at terahertz frequencies via optical Kerr effect

Lin Xian Jin Zuan-Ming Li Ju-Geng Guo Fei-Yun Zhuang Nai-Feng Chen Jian-Zhong Dai Ye Yan Xiao-Na Ma Guo-Hong

Citation:

Ultrafast polarization modulation of laser pulses at terahertz frequencies via optical Kerr effect

Lin Xian, Jin Zuan-Ming, Li Ju-Geng, Guo Fei-Yun, Zhuang Nai-Feng, Chen Jian-Zhong, Dai Ye, Yan Xiao-Na, Ma Guo-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Polarized light has already been widely used for photography and display technologies. Magneto-optical Faraday effect, i.e., the light polarization rotates in the magnetic field applied to the material in the direction of light propagation, plays a crucial role in the interaction between light and spin. Faraday effect allow us to understand the nature of magnetization in condensed materials. As an effect opposite to the Faraday effect, the magnetization can be induced in a transparent medium exposed to a circularly polarized electromagnetic wave, which is called inverse Faraday effect. Knowledge of the mechanism provides the opportunities of modulation devices in photonics, ultrafast opto-magnetism and magnonics. In this paper, we experimentally demonstrate a proof-of-concept ultrafast polarization modulation by employing circularly polarized light to demonstrate a strengthened terahertz (THz) frequency Kerr modulation signal, at room temperature. By using the transient pumpprobe spectroscopy with the reflected geometry, we are able to demonstrate the feasibility of such an ultrafast magneto-optical polarization modulation at 0.19 THz in a paramagnetic Li:NaTb (WO4)2 crystal with a thickness of 3 mm. The time-resolved modulation signal is explained by the interaction between two counter-propagating laser pulses (central photon energy of 1.55 eV) within the crystal via the optical Kerr effect. We find that the amplitude of the modulation increases with the pump fluence increasing, while the modulation frequency is dependent neither on the pump fluence nor on polarization of pump beam. However, it can further be found that the phase and amplitude of the transient Kerr modulation are strongly dependent on the helicity of the circularly polarized pump pulses. Indeed, these oscillating signals may be mistaken for spin excitation modes. The present findings allow us to get an insight into the transient magneto-optical dynamical process in transparent medium. In addition, the polarization modulation of ultrashort laser pulse on a picosecond time scale will facilitate all-optical data processing, as well as the polarization-dependent ultrafast dynamics in various material systems, which span from condensed matter to molecular spectroscopy. In this regard, our experimental results provide a possibility for designing novel all-optical (magneto-optical) modulators operating at THz clock frequencies. The magneto-optical polarization response modulated at THz frequencies may have new possibilities for designing all-optical devices, such as ultrafast modulators.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604202,11674213,61735010,11774220), the Young Eastern Scholar at Shanghai Institutions of Higher Learning, China (Grant No. QD2015020), the “Chen Guang” Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation, China (Grant No. 16CG45), and the Shanghai Rising-Star Program, China (Grant No.18QA1401700).
    [1]

    Svirko Y P, Zheludev N I 1998 Polarization of Light in Nonlinear Optics (New York: John Wiley & Sons) p1

    [2]

    Wraback M, Shen H 2000 Appl. Phys. Lett. 76 1288

    [3]

    Gansen E J, Jarasiunas K, Smirl A L 2002 Appl. Phys. Lett. 80 971

    [4]

    Wismer M S, Stockman M I, Yakovlev V S 2017 Phys. Rev. B 96 224301

    [5]

    Bull J D, Jaeger N A F, Kato H, Fairburn M, Reid A, Ghanipour P 2004 Proc. SPIE 5577 133

    [6]

    Yang Y M, Kelley K, Sachet E, Campione S, Luk T S, Maria J P, Sinclair M B, Brener I 2017 Nature Photon. 11 390

    [7]

    Li D F 2017 Nature Photon. 11 336

    [8]

    Zvezdin A K, Kotov V A 1997 Modern Magneto-Optics and Magnetooptical Materials (Boca Raton: CRC Press) p1

    [9]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655

    [10]

    Pershan P S, Ziel J P V D, Malmstrom L D 1966 Phys. Rev. 143 574

    [11]

    Jin Z, Ma H, Wang L, Ma G, Guo F, Chen J 2010 Appl. Phys. Lett. 96 201108

    [12]

    Higo T, Man H, Gopman D B, Wu L, Koretsune T, Erve O M J V, Kabanov Y P, Rees D, Li Y F, Suzuki M T, Patankar S, Ikhlas M, Chien C L, Arita R, Shull R D, Orenstein J, Nakatsuji S 2018 Nature Photon. 12 73

    [13]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731

    [14]

    Wang H, Jin Z, Liu X, Zhang Z, Lin X, Cheng Z, Ma G 2017 Appl. Phys. Lett. 110 252407

    [15]

    Bossini D, Konishi K, Toyoda S, Arima T, Yumoto J, Kuwata-Gonokami M 2018 Nature Phys. 14 370

    [16]

    Vicario C, Ruchert C, Ardana-Lamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nature Photon. 7 720

    [17]

    Shalaby M, Vicario C, Hauri C P 2016 Appl. Phys. Lett. 108 182903

    [18]

    Riordan J A, Sun F G, Lu Z G, Zhang X C 1997 Appl. Phys. Lett. 71 1452

    [19]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nature Photon. 5 31

    [20]

    Jin Z, Ma H, Li D, Wang L, Ma G, Guo F, Chen J 2011 Appl. Phys. B 104 59

    [21]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422

    [22]

    Grishunin K, Huisman T, Li G Q, Mishina E, Rasing T, Kimel A V, Zhang K, Jin Z, Cao S, Ren W, Ma G, Mikhaylovskiy R V 2018 ACS Photon. 5 1375

    [23]

    Kim J W, Vomir M, Bigot J Y 2012 Phys. Rev. Lett. 109 166601

    [24]

    Scherbakov A V, Salasyuk A S, Akimov A V, Liu X, Bombeck M, Brüggemann C, Yakovlev D R, Sapega V F, Furdyna J K, Bayer M 2010 Phys. Rev. Lett. 105 117204

    [25]

    Subkhangulov R R, Mikhaylovskiy R V, Zvezdin A K, Kruglyak V V, Rasing T, Kimel A V 2016 Nature Photon. 10 111

    [26]

    Ghamsari B G, Berini P 2016 Nature Photon. 10 74

    [27]

    Mikhaylovskiy R V, Subkhangulov R R, Rasing T, Kimel A V 2016 Opt. Lett. 4 5071

    [28]

    Liu J, Guo F, Zhao B, Zhuang N, Chen Y, Gao Z, Chen J 2008 J. Cryst. Growth 310 2613

    [29]

    Gruber J B, Sardar D K, Yow R M, Valiev U V, Mukhammadiev A K, Sokolov V Y, Amin I, Lengyel K, Kachur I S, Piryatinskaya V G, Zandi B 2007 J. Appl. Phys. 101 023108

    [30]

    Gavignet-Tillard A, Hammann J, Seze L D 1973 J. Phys. Chem. Solids 34 241

    [31]

    Righini R 1993 Science 262 1386

    [32]

    Farrer R A, Fourkas J T 2003 Acc. Chem. Res. 36 605

    [33]

    Guo F, Sun Y, Yang X, Chen X, Zhao B, Zhuang N, Chen J 2016 Opt. Express 24 5734

  • [1]

    Svirko Y P, Zheludev N I 1998 Polarization of Light in Nonlinear Optics (New York: John Wiley & Sons) p1

    [2]

    Wraback M, Shen H 2000 Appl. Phys. Lett. 76 1288

    [3]

    Gansen E J, Jarasiunas K, Smirl A L 2002 Appl. Phys. Lett. 80 971

    [4]

    Wismer M S, Stockman M I, Yakovlev V S 2017 Phys. Rev. B 96 224301

    [5]

    Bull J D, Jaeger N A F, Kato H, Fairburn M, Reid A, Ghanipour P 2004 Proc. SPIE 5577 133

    [6]

    Yang Y M, Kelley K, Sachet E, Campione S, Luk T S, Maria J P, Sinclair M B, Brener I 2017 Nature Photon. 11 390

    [7]

    Li D F 2017 Nature Photon. 11 336

    [8]

    Zvezdin A K, Kotov V A 1997 Modern Magneto-Optics and Magnetooptical Materials (Boca Raton: CRC Press) p1

    [9]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655

    [10]

    Pershan P S, Ziel J P V D, Malmstrom L D 1966 Phys. Rev. 143 574

    [11]

    Jin Z, Ma H, Wang L, Ma G, Guo F, Chen J 2010 Appl. Phys. Lett. 96 201108

    [12]

    Higo T, Man H, Gopman D B, Wu L, Koretsune T, Erve O M J V, Kabanov Y P, Rees D, Li Y F, Suzuki M T, Patankar S, Ikhlas M, Chien C L, Arita R, Shull R D, Orenstein J, Nakatsuji S 2018 Nature Photon. 12 73

    [13]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731

    [14]

    Wang H, Jin Z, Liu X, Zhang Z, Lin X, Cheng Z, Ma G 2017 Appl. Phys. Lett. 110 252407

    [15]

    Bossini D, Konishi K, Toyoda S, Arima T, Yumoto J, Kuwata-Gonokami M 2018 Nature Phys. 14 370

    [16]

    Vicario C, Ruchert C, Ardana-Lamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nature Photon. 7 720

    [17]

    Shalaby M, Vicario C, Hauri C P 2016 Appl. Phys. Lett. 108 182903

    [18]

    Riordan J A, Sun F G, Lu Z G, Zhang X C 1997 Appl. Phys. Lett. 71 1452

    [19]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nature Photon. 5 31

    [20]

    Jin Z, Ma H, Li D, Wang L, Ma G, Guo F, Chen J 2011 Appl. Phys. B 104 59

    [21]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422

    [22]

    Grishunin K, Huisman T, Li G Q, Mishina E, Rasing T, Kimel A V, Zhang K, Jin Z, Cao S, Ren W, Ma G, Mikhaylovskiy R V 2018 ACS Photon. 5 1375

    [23]

    Kim J W, Vomir M, Bigot J Y 2012 Phys. Rev. Lett. 109 166601

    [24]

    Scherbakov A V, Salasyuk A S, Akimov A V, Liu X, Bombeck M, Brüggemann C, Yakovlev D R, Sapega V F, Furdyna J K, Bayer M 2010 Phys. Rev. Lett. 105 117204

    [25]

    Subkhangulov R R, Mikhaylovskiy R V, Zvezdin A K, Kruglyak V V, Rasing T, Kimel A V 2016 Nature Photon. 10 111

    [26]

    Ghamsari B G, Berini P 2016 Nature Photon. 10 74

    [27]

    Mikhaylovskiy R V, Subkhangulov R R, Rasing T, Kimel A V 2016 Opt. Lett. 4 5071

    [28]

    Liu J, Guo F, Zhao B, Zhuang N, Chen Y, Gao Z, Chen J 2008 J. Cryst. Growth 310 2613

    [29]

    Gruber J B, Sardar D K, Yow R M, Valiev U V, Mukhammadiev A K, Sokolov V Y, Amin I, Lengyel K, Kachur I S, Piryatinskaya V G, Zandi B 2007 J. Appl. Phys. 101 023108

    [30]

    Gavignet-Tillard A, Hammann J, Seze L D 1973 J. Phys. Chem. Solids 34 241

    [31]

    Righini R 1993 Science 262 1386

    [32]

    Farrer R A, Fourkas J T 2003 Acc. Chem. Res. 36 605

    [33]

    Guo F, Sun Y, Yang X, Chen X, Zhao B, Zhuang N, Chen J 2016 Opt. Express 24 5734

  • [1] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [3] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [4] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [5] Guo Liang-Hao, Wang Shao-Meng, Yang Li-Xia, Wang Kai-Cheng, Ma Jia-Lu, Zhou Jun, Gong Yu-Bin. Weak resonance effects of THz wave transimission in nerve cell. Acta Physica Sinica, 2021, 70(24): 240301. doi: 10.7498/aps.70.20211677
    [6] Song Bang-Ju, Jin Zuan-Ming, Guo Chen-Yang, Ruan Shun-Yi, Li Ju-Geng, Wan Cai-Hua, Han Xiu-Feng, Ma Guo-Hong, Yao Jian-Quan. Terahertz emission from Y3Fe5O12(YIG)/Pt heterostructures via ultrafast spin Seebeck effect. Acta Physica Sinica, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [7] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [8] Zhang Shun-Nong, Zhu Wei-Hua, Li Ju-Geng, Jin Zuan-Ming, Dai Ye, Zhang Zong-Zhi, Ma Guo-Hong, Yao Jian-Quan. Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures. Acta Physica Sinica, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [9] Zhang Jing-Shui, Kong Ling-Qin, Dong Li-Quan, Liu Ming, Zuo Jian, Zhang Cun-Lin, Zhao Yue-Jin. Diffusion part in terahertz complementary metal oxide semiconductor transistor detector model. Acta Physica Sinica, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [10] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [11] Huang Zhi-Fang, Ni Ya-Xian, Sun Hua. Localized surface plasmon resonance and the size effects of magneto-optic rods. Acta Physica Sinica, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [12] Zhou Wen, Chen He-Ming. Mode division multiplexing of two-dimensional triangular lattice photonic crystal based on magneto-optical effect. Acta Physica Sinica, 2015, 64(6): 064210. doi: 10.7498/aps.64.064210
    [13] Li Chang-Sheng. Mutual compensation property of electrooptic and magnetooptic effects and its application to sensor. Acta Physica Sinica, 2015, 64(4): 047801. doi: 10.7498/aps.64.047801
    [14] Liu Wei-Li, Zou Xiao-Bing, Fu Yang-Yang, Wang Peng, Wang Xin-Xin. On-line measurement on surface electric field of insulator in vacuum based on Kerr effect. Acta Physica Sinica, 2014, 63(9): 095207. doi: 10.7498/aps.63.095207
    [15] Guo Lu, Wei Dong, Chen Hai-Xia, Xiong De-Zhi, Wang Peng-Jun, Zhang Jing. Experimental study on laser pattern formation by strong nonlinear effects in rubidium atomic hot vapor. Acta Physica Sinica, 2008, 57(7): 4224-4229. doi: 10.7498/aps.57.4224
    [16] Zhang Guo-Ying, Xia Tian, Cheng Yong, Xue Liu-Ping, Zhang Xue-Long. Role of exchange interaction in the magnetic and magneto-optic properties of CeF3 crystal. Acta Physica Sinica, 2006, 55(6): 3091-3094. doi: 10.7498/aps.55.3091
    [17] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Liu Zhi-Bo, Zhang Chun-Ping, Zhang Guang-Yin. Transient thermally induced optical nonlinearities in Kerr media. Acta Physica Sinica, 2004, 53(2): 620-625. doi: 10.7498/aps.53.620
    [18] Chen Shu-Qi, Liu Zhi-Bo, Zhou Wen-Yuan, Tian Jian-Guo Zang Wei-Ping, Zang Wei-Ping, Song Feng, Zhang Chun-Ping. The influence of pulse width on transient thermally induced optical nonlinearities in a Kerr nonlinear medium. Acta Physica Sinica, 2004, 53(10): 3577-3582. doi: 10.7498/aps.53.3577
    [19] WANG SONG-YOU, JU XIAO-HUA, LI HE-YIN, XU XU-DONG, ZHOU PENG, ZHANG RONG-JUN, YANG YUE-MEI, ZHOU SHI-MING, CHEN LIANG-YAO. THE SIZE EFFECT ON OPTICAL AND MAGNETO-OPTICAL PROPERTIES IN Fe-Ag GRANULAR FILMS. Acta Physica Sinica, 2001, 50(11): 2252-2257. doi: 10.7498/aps.50.2252
    [20] LIANG BING-QING, CHEN XI, ZHOU XUN, LIU HONG, WANG HAI, TANG YUN-JUN, WANG YIN-JUN, WANG SONG-YOU, CHEN LIANG-YAO. MAGNETO-OPTICAL PROPERTIES OF Pt1-xMnx/Co MULTILAYERS. Acta Physica Sinica, 2000, 49(10): 2059-2065. doi: 10.7498/aps.49.2059
Metrics
  • Abstract views:  7933
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  30 July 2018
  • Accepted Date:  01 October 2018
  • Published Online:  05 December 2018

/

返回文章
返回