Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Harmonic signal extraction from chaotic interference based on synchrosqueezed wavelet transform

Wang Xiang-Li Wang Bin Wang Wen-Bo Yu Min Wang Zhen Chang Yu-Chan

Citation:

Harmonic signal extraction from chaotic interference based on synchrosqueezed wavelet transform

Wang Xiang-Li, Wang Bin, Wang Wen-Bo, Yu Min, Wang Zhen, Chang Yu-Chan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Extracting the harmonic signal from the chaotic interference background is very important for theory and practical application. The wavelet transform and empirical mode decomposition (EMD) have been widely applied to harmonic extraction from chaotic interference, but because the wavelet and EMD both present the mode mixing and are sensitive to noise, the harmonic signal often cannot be precisely separated out. The synchrosqueezing wavelet transform (SST) is based on the continuous wavelet transform, through compressing the time-frequency map of wavelet transform in the frequency domain, the highly accurate time-frequency curve is obtained. The time-frequency curve of SST which does not exist between cross terms, can better improve the mode mixing. The SST has also good robustness against noise. When the signal is a mixed strong noise, the SST can still obtain the clear time-frequency curve and approximate invariant decomposition results. In this paper, the SST is applied to the multiple harmonic signal extraction from chaotic interference background, and a new harmonic extracting method is proposed based on the SST. First, the signal obtained by mixing chaotic and harmonic signals is decomposed into intrinsic mode type function (IMTF) by the SST. Then using the Hilbert transform the frequency of each IMTF is analyzed, and the harmonic signals are separated from the mixed signal. Selecting the Duffing signal as the chaotic interference signal, the extracting ability of the proposed method for multiple harmonic signals is analyzed. The different harmonic extraction experiments are conducted by using the proposed SST method for different frequency intervals and different noise intensity multiple harmonic signals. And the experimental results are compared with those from the classical EMD method. When the chaotic interference signal is not contained by noise, the harmonic signal extraction effect is seriously affected by the frequency interval between harmonic signals. If the harmonic frequency interval between harmonic signals is relatively narrow, each harmonic signal cannot be accurately extracted by the EMD method. However, the harmonic extraction precision of SST method is not seriously influenced by the change of harmonic frequency interval, and when the frequency interval between harmonic signals is small the SST method can still accurately extract each harmonic signal from chaotic interference. When the noise contains a chaotic interference signal, the harmonic extraction effect of EMD method significantly decreases with noise intensity increasing. When the noise level reaches 80%, the extracted harmonic signal from the EMD method is seriously distorted, the correlation coefficient of the extracted harmonic signal with original harmonic signal is only about 0.6. With the increase of noise intensity, the harmonic extraction effect of SST method has also a declining trend. But as the noise intensity is within 120%, the harmonic extraction effect of SST method does not greatly change and the extracted harmonic signal precision is still higher, which shows that the harmonic extraction method based on the SST has good robustness against noise. The comprehensive experimental results show that the proposed SST method has high extracting precision for multiple harmonic signals of different frequency intervals, and the SST method has better robustness against Gauss white noise. The extracted results of harmonic signal are better than those from the classical empirical mode decomposition method.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11201354), Foundation of State Key Laboratory of Satellite Ocean Environment Dynamics, China (Grant No. SOED1405), the Foundation of Hubei Province Key Laboratory of Metallurgical Industry Process System Science, China (Grant No. Z201303).
    [1]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 069701 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 物理学报 62 069701]

    [2]

    Lu K, Wang F Z, Zhang G L, Fu W H 2013 Chin. Phys. B 22 120202

    [3]

    Li T Z, Wang Y, Luo M K 2013 Chin. Phys. B 22 080501

    [4]

    Lu S X, Wang Z S, Hu Z H, Feng J C 2014 Chin. Phys. B 23 010506

    [5]

    Xing H Y, Cheng Y Y, Xu W 2012 Acta Phys. Sin. 61 100506 (in Chinese) [行鸿彦, 程艳燕, 徐伟 2012 物理学报 61 100506]

    [6]

    Leung H, Huang X P 1996 IEEE Trans. Sign. Process. 44 2456

    [7]

    Haykin S, Li X B 1995 Proc. IEEE 83 94

    [8]

    Stark J, Arumugaw B 1992 Int. J. Bifurc. Chaos 2 413

    [9]

    Wang F P, Guo J B, Wang Z J 2001 Acta Phys. Sin. 50 1019 (in Chinese) [汪芙平, 郭静波, 王赞基 2001 物理学报 50 1019]

    [10]

    Huang N E, Shen Z, Long S R 1998 Proc. Roy. Soc. London A 454 903

    [11]

    Wang G G, Wang S X 2006 J. Jilin Univ. (Sci. Ed.) 44 439 (in Chinese) [王国光, 王树勋 2006 吉林大学学报(理学版) 44 439]

    [12]

    Li H G, Meng G 2004 Acta Phys. Sin. 53 2069 (in Chinese) [李鸿光, 孟光 2004 物理学报 53 2069]

    [13]

    Wang E F, Wang D Q, Ding Q 2011 J. Commun. 32 60 (in Chinese) [王尔馥, 王冬青, 丁群 2011 通信学报 32 60]

    [14]

    Wang E F, Wang D Q 2012 J. Engineer. Heilongjiang Univ. 3 105 (in Chinese) [王尔馥, 王冬青 2012 黑龙江大学工程学报 3 105]

    [15]

    Chen G D, Wang Z C 2012 Mech. Syst. Sign. Process. 28 259

    [16]

    Liu J L, Ren W X, Wang Z C, Hu Y D 2013 J. Vib. Shock 32 37 (in Chinese) [刘景良, 任伟新, 王佐材, 胡异丁 2013 振动与冲击 32 37]

    [17]

    Daubechies I, Lu J F, Wu H T 2011 Appl. Computat. Harmon. Anal. 2 243

    [18]

    Wu H T 2013 Appl. Computat. Harmon. Anal. 35 181

    [19]

    Gaurav T, Eugene B, Neven S F, Wu H T 2012 Sign. Process. 93 1079

    [20]

    Sylvain M, Thomas O, Stephen M 2012 IEEE Trans. Sign. Process. 60 5787

  • [1]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 069701 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 物理学报 62 069701]

    [2]

    Lu K, Wang F Z, Zhang G L, Fu W H 2013 Chin. Phys. B 22 120202

    [3]

    Li T Z, Wang Y, Luo M K 2013 Chin. Phys. B 22 080501

    [4]

    Lu S X, Wang Z S, Hu Z H, Feng J C 2014 Chin. Phys. B 23 010506

    [5]

    Xing H Y, Cheng Y Y, Xu W 2012 Acta Phys. Sin. 61 100506 (in Chinese) [行鸿彦, 程艳燕, 徐伟 2012 物理学报 61 100506]

    [6]

    Leung H, Huang X P 1996 IEEE Trans. Sign. Process. 44 2456

    [7]

    Haykin S, Li X B 1995 Proc. IEEE 83 94

    [8]

    Stark J, Arumugaw B 1992 Int. J. Bifurc. Chaos 2 413

    [9]

    Wang F P, Guo J B, Wang Z J 2001 Acta Phys. Sin. 50 1019 (in Chinese) [汪芙平, 郭静波, 王赞基 2001 物理学报 50 1019]

    [10]

    Huang N E, Shen Z, Long S R 1998 Proc. Roy. Soc. London A 454 903

    [11]

    Wang G G, Wang S X 2006 J. Jilin Univ. (Sci. Ed.) 44 439 (in Chinese) [王国光, 王树勋 2006 吉林大学学报(理学版) 44 439]

    [12]

    Li H G, Meng G 2004 Acta Phys. Sin. 53 2069 (in Chinese) [李鸿光, 孟光 2004 物理学报 53 2069]

    [13]

    Wang E F, Wang D Q, Ding Q 2011 J. Commun. 32 60 (in Chinese) [王尔馥, 王冬青, 丁群 2011 通信学报 32 60]

    [14]

    Wang E F, Wang D Q 2012 J. Engineer. Heilongjiang Univ. 3 105 (in Chinese) [王尔馥, 王冬青 2012 黑龙江大学工程学报 3 105]

    [15]

    Chen G D, Wang Z C 2012 Mech. Syst. Sign. Process. 28 259

    [16]

    Liu J L, Ren W X, Wang Z C, Hu Y D 2013 J. Vib. Shock 32 37 (in Chinese) [刘景良, 任伟新, 王佐材, 胡异丁 2013 振动与冲击 32 37]

    [17]

    Daubechies I, Lu J F, Wu H T 2011 Appl. Computat. Harmon. Anal. 2 243

    [18]

    Wu H T 2013 Appl. Computat. Harmon. Anal. 35 181

    [19]

    Gaurav T, Eugene B, Neven S F, Wu H T 2012 Sign. Process. 93 1079

    [20]

    Sylvain M, Thomas O, Stephen M 2012 IEEE Trans. Sign. Process. 60 5787

  • [1] Liu Xin-Yu, Yang Su-Hui, Liao Ying-Qi, Lin Xue-Tong. Laser underwater ranging based on wavelet transform. Acta Physica Sinica, 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [2] Xu Zi-Fei, Miao Wei-Pao, Li Chun, Jin Jiang-Tao, Li Shu-Jun. Nonlinear feature extraction and chaos analysis of flow field. Acta Physica Sinica, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [3] Li Jia-Wei, Lu Li-Cheng, Guo Sheng-Ming, Ma Li. Inversion of seabed attenuation by using single mode extracted by warping transform. Acta Physica Sinica, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [4] Li Guang-Ming, Hu Zhi-Hui. Blind chaotic signal extraction based on artificial bee colony algorithm. Acta Physica Sinica, 2016, 65(23): 230501. doi: 10.7498/aps.65.230501
    [5] Wang Xiang-Li, Wang Bin, Wang Wen-Bo, Yu Min. Extractraction of non-stationary harmonic from chaotic background based on synchrosqueezed wavelet transform. Acta Physica Sinica, 2016, 65(20): 200202. doi: 10.7498/aps.65.200202
    [6] Qin Li, Liu Fu-Cai, Liang Li-Huan, Hou Tian-Tian. H∞ control for spacecraft chaotic attitude motion by liquid sloshing disturbance observer. Acta Physica Sinica, 2014, 63(9): 090502. doi: 10.7498/aps.63.090502
    [7] Zhang Kun, Zhang Yang, Zha Xiao-Ming, Xiong Yi, Peng Guang-Qiang, Fan You-Ping. Chaos analysis of high-frequency harmonics of locomotive LCI. Acta Physica Sinica, 2012, 61(20): 200512. doi: 10.7498/aps.61.200512
    [8] Song Tong, Li Han. Chaotic time series prediction based on wavelet echo state network. Acta Physica Sinica, 2012, 61(8): 080506. doi: 10.7498/aps.61.080506
    [9] Yu Hai-Jun, Du Jian-Ming, Zhang Xiu-Lan. Wavelet transform of coherent state. Acta Physica Sinica, 2012, 61(16): 164205. doi: 10.7498/aps.61.164205
    [10] Gan Tian, Feng Shao-Tong, Nie Shou-Ping, Zhu Zhu-Qing. An image hiding and blind extraction algorithm based on block discrete wavelet transform. Acta Physica Sinica, 2012, 61(8): 084203. doi: 10.7498/aps.61.084203
    [11] Fu Mao-Jing, Zhuang Jian-Jun, Hou Feng-Zhen, Ning Xin-Bao, Zhan Qing-Bo, Shao Yi. Extracting human gait series based on the wavelet transform. Acta Physica Sinica, 2010, 59(6): 4343-4350. doi: 10.7498/aps.59.4343
    [12] Fan Yong-Quan, Zhang Jia-Shu. Narrowband interference suppression in chaos-based communications based on set-membership estimation. Acta Physica Sinica, 2008, 57(5): 2714-2721. doi: 10.7498/aps.57.2714
    [13] Deng Yu-Qiang, Cao Shi-Ying, Yu Jing, Xu Tao, Wang Qing-Yue, Zhang Zhi-Gang. Carrier-envelope phase extraction with wavelet-transform technique of amplified ultrashort optical pulses. Acta Physica Sinica, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [14] Analyzing the noise resistance effect for two chaos secure systems. Acta Physica Sinica, 2007, 56(12): 6857-6864. doi: 10.7498/aps.56.6857
    [15] Deng Yu-Qiang, Xing Qi-Rong, Lang Li-Ying, Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang. Wavelet-transform in terahertz time-domain spectroscopy. Acta Physica Sinica, 2005, 54(11): 5224-5227. doi: 10.7498/aps.54.5224
    [16] You Rong-Yi, Chen Zhong, Xu Shen-Chu, Wu Bo-Xi. Study on phase-space reconstruction of chaotic signal based on wavelet transform. Acta Physica Sinica, 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [17] Li Hong-Guang, Meng Guang. Harmonic signal extraction from chaotic interference based on empirical mode decomposition. Acta Physica Sinica, 2004, 53(7): 2069-2073. doi: 10.7498/aps.53.2069
    [18] Liu Hai-Feng, Dai Zheng-Hua, Chen Feng, Gong Xin, Yu Zun-Hong. . Acta Physica Sinica, 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
    [19] WANG FU-PING, GUO JING-BO, WANG ZAN-JI, XIAO DA-CHUAN, LI MAO-TANG. HARMONIC SIGNAL EXTRACTION FROM STRONG CHAOTIC INTERFERENCE. Acta Physica Sinica, 2001, 50(6): 1019-1023. doi: 10.7498/aps.50.1019
    [20] WANG ZHONG-YONG, CAI YUAN-LI, JIA DONG. WAVELET BASE CONTROL FOR CHAOS MOTION. Acta Physica Sinica, 1999, 48(2): 206-212. doi: 10.7498/aps.48.206
Metrics
  • Abstract views:  7348
  • PDF Downloads:  5138
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2014
  • Accepted Date:  25 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回