Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stable structure optimization of Au-Cu-Pt trimetallic nanoparticles based on genetic algorithm

Li Tie-Jun Sun Yue Zheng Ji-Wen Shao Gui-Fang Liu Tun-Dong

Citation:

Stable structure optimization of Au-Cu-Pt trimetallic nanoparticles based on genetic algorithm

Li Tie-Jun, Sun Yue, Zheng Ji-Wen, Shao Gui-Fang, Liu Tun-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Alloy nanoparticles exhibit multifunctional properties different from monometallic nanoparticles. Especially, when a third metal is introduced into bimetallic nanoparticles system to form trimetallic nanoparticles, their chemical activities will be further improved. As the catalytic reaction of nanoparticles usually takes place on surfaces, and the activity and stability are closely related to their structures, therefore the research on the stable structure is crucial for understanding their catalytic activities. In addition, the electrochemically synthesized tetrahexahedral nanoparticles bound with highindex facets may exhibit greatly enhanced catalytic activity because of their large density of low coordination sites at the surface. Based on the above reasons, this paper carries out the investigation on the stable structures of tetrahexahedral Au-Cu-Pt trimetallic nanoparticles by using an improved genetic algorithm and the quantum-corrected Sutton-Chen (Q-SC) type many-body potentials. To avoid the genetic algorithm being trapped into premature convergence, two improvement strategies are developed. On the one hand, an atom coordinate ranking operation, which is implemented according to the atomic distance from the core, is proposed for reducing the probability of individual loss. On the other hand, an alternating bit means is introduced into the crossover operation to keep the atomic composition ratio unchanged. Moreover, the performance of genetic algorithm and the influence of original configuration on the stable structures of Au- Cu-Pt trimetallic nanoparticles with different sizes and different compositions also have been investigated. One stochastic distribution structure and three core-shell distribution structures of Au@CuPt, Cu@AuPt and Pt@AuCu are adopted as the initial structures, respectively. Eleven optimization trials on Au-Cu-Pt trimetallic nanoparticles in Au-Cu-Pt system with Au : Cu : Pt of 0:343 : 0:343 : 0:314 with 443 atoms are used to verify that the different original structures should have no effect on the final stable structure. Furthermore, 30 random trails on Au-Cu-Pt trimetallic nanoparticles at Au : Cu : Pt of 0:316 : 0:316 : 0:368 with 443 atoms are conducted to prove that the genetic algorithm can obtain robust results with small standard deviation. Finally, the segregation analysis results show that: In Au-Cu-Pt trimetallic nanoparticles, Au and Cu atoms prefer to aggregate on the surface while Pt atoms are preferential to locate in the core. Furthermore, Cu atoms exhibit stronger surface segregation than Au atoms. For small Au or Cu concentration, Au and Cu atoms would display the maximum segregation. They begin to compete during aggregation, and the Cu atoms have a strong tendency for surface segregation when the number of Au and Cu atoms is bigger than the total number of surface atoms. With increasing number of Au and Cu atoms over those on the surface and sub-surface, Au atoms would display a strong surface segregation than Cu atoms. Additionally, Cu atoms will mix with Pt atoms in the inner layers over the sub-surface after occupying the surface. The distribution of surface atoms has been further examined by the analyses of coordination number: the Cu atoms tend to occupy the vertices, edges and kinks, while the Au atoms preferentially segregate to the flattened surface. This study provides a perspective on structural features and segregation behavior of trimetallic nanoparticles.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51271156 61403318), the Natural Science Foundation of Fujian Province of China (Grant Nos. 2013J01255, 2013J0602) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2012121010)
    [1]

    Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G 2011 Chem. Soc. Rev. 40 4167

    [2]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [3]

    Balerna A, Evangelisti C, Schiavi E, Vitulli G, Bertinetti L, Martra G, Mobilio S 2013 J. Phys.: Conf. Ser. 430 012052

    [4]

    Yun K, Cho Y H, Cha P R, Lee J, Nam H S 2012 Acta Mater 60 4908

    [5]

    Huang R, Shao G F, Wen Y H, Sun S G 2014 Phys. Chem. Chem. Phys. 16 22754

    [6]

    Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G 2012 Chem. Sci. 3 1157

    [7]

    Cheng D J, Liu X, Cao D P 2007 Nanotechnology 18 475702

    [8]

    Kahanal S, Nabraj B, Velazquez-Salazar JJ 2013 Nanoscale 5 12456

    [9]

    Bhagiyalakshmi M, Anuradha R, ParBull S D 2010 Bull. Korean Chem. Soc. 31 120

    [10]

    Kang S W, Lee Y W, Park Y S 2013 ACS Nano 7 7945

    [11]

    Fan T E, Liu T D, Zheng J W, Shao G F, Wen Y H 2015 J. Mater. Sci. 50 3308

    [12]

    Guo S J, Zhang S, Sun X L, Sun S H 2011 J. Am. Chem. Soc. 133 15354

    [13]

    Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L 2007 Science 316 732

    [14]

    Sun X L, Li D G, Ding Y, Zhu W L, Guo S J, Wang Z L, Sun S H 2014 J. Am. Chem. Soc. 136 5745

    [15]

    Liu T D,Zheng J W, Shao G F, Fan T E, Wen Y H 2015 Chin. Phys. B 24 033601

    [16]

    Oh J S, Nam H S, Choi J H, Lee S C 2013 Met. Mater. Int. 19 513

    [17]

    Lv J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104

    [18]

    Chen Z, Jiang X, Li J, Li S, Wang L 2013 J. Comput. Chem. 34 1046

    [19]

    Chen Z H, Jiang X W, Li J B, Li S S 2013 J. Chem. Phys. 138 214303

    [20]

    Liu T D, Chen J R, Hong W P, Shao G F, Wang T N, Zheng J W, Wen Y H 2013 Acta Phys. Sin. 62 193601

    [21]

    Cagin T, Kimura Y, Qi Y, Li H, Ikeda H, Johnson W L, Goddard W A 1999 Mater. Res. Soc. Symp. Proc. 554 43

    [22]

    Li S F, Zhao X J, Xu X S, Gao Y F, Zhang Z Y 2013 Phys. Rev. Lett. 111 115501

    [23]

    Zhang H J, Watanabe T, Okumura M, Haruta M, Toshima N 2012 Nature Mater. 11 49

    [24]

    Liu T D, Fan T E, Shao G F, Zheng J W, Wen Y H 2014 Phys. Lett. A 378 2965

    [25]

    Xiao S, Hua W, Luo W, Wu Y, Li X, Deng H 2006 Eur. Phys. J. B 54 479

  • [1]

    Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G 2011 Chem. Soc. Rev. 40 4167

    [2]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [3]

    Balerna A, Evangelisti C, Schiavi E, Vitulli G, Bertinetti L, Martra G, Mobilio S 2013 J. Phys.: Conf. Ser. 430 012052

    [4]

    Yun K, Cho Y H, Cha P R, Lee J, Nam H S 2012 Acta Mater 60 4908

    [5]

    Huang R, Shao G F, Wen Y H, Sun S G 2014 Phys. Chem. Chem. Phys. 16 22754

    [6]

    Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G 2012 Chem. Sci. 3 1157

    [7]

    Cheng D J, Liu X, Cao D P 2007 Nanotechnology 18 475702

    [8]

    Kahanal S, Nabraj B, Velazquez-Salazar JJ 2013 Nanoscale 5 12456

    [9]

    Bhagiyalakshmi M, Anuradha R, ParBull S D 2010 Bull. Korean Chem. Soc. 31 120

    [10]

    Kang S W, Lee Y W, Park Y S 2013 ACS Nano 7 7945

    [11]

    Fan T E, Liu T D, Zheng J W, Shao G F, Wen Y H 2015 J. Mater. Sci. 50 3308

    [12]

    Guo S J, Zhang S, Sun X L, Sun S H 2011 J. Am. Chem. Soc. 133 15354

    [13]

    Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L 2007 Science 316 732

    [14]

    Sun X L, Li D G, Ding Y, Zhu W L, Guo S J, Wang Z L, Sun S H 2014 J. Am. Chem. Soc. 136 5745

    [15]

    Liu T D,Zheng J W, Shao G F, Fan T E, Wen Y H 2015 Chin. Phys. B 24 033601

    [16]

    Oh J S, Nam H S, Choi J H, Lee S C 2013 Met. Mater. Int. 19 513

    [17]

    Lv J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104

    [18]

    Chen Z, Jiang X, Li J, Li S, Wang L 2013 J. Comput. Chem. 34 1046

    [19]

    Chen Z H, Jiang X W, Li J B, Li S S 2013 J. Chem. Phys. 138 214303

    [20]

    Liu T D, Chen J R, Hong W P, Shao G F, Wang T N, Zheng J W, Wen Y H 2013 Acta Phys. Sin. 62 193601

    [21]

    Cagin T, Kimura Y, Qi Y, Li H, Ikeda H, Johnson W L, Goddard W A 1999 Mater. Res. Soc. Symp. Proc. 554 43

    [22]

    Li S F, Zhao X J, Xu X S, Gao Y F, Zhang Z Y 2013 Phys. Rev. Lett. 111 115501

    [23]

    Zhang H J, Watanabe T, Okumura M, Haruta M, Toshima N 2012 Nature Mater. 11 49

    [24]

    Liu T D, Fan T E, Shao G F, Zheng J W, Wen Y H 2014 Phys. Lett. A 378 2965

    [25]

    Xiao S, Hua W, Luo W, Wu Y, Li X, Deng H 2006 Eur. Phys. J. B 54 479

  • [1] Luan Jia-Qi, Zhang Ya-Jie, Chen Yu, Gao Ding-Shan, Li Pei-Li, Li Jia-Qi, Li Jia-Qi. Genetic algorithm based terahertz multifunctional reconfigurable Dirac semi-metallic coded metasurface. Acta Physica Sinica, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [2] Liu Tun-Dong, Li Ze-Peng, Ji Qing-Shuang, Shao Gui-Fang, Fan Tian-E, Wen Yu-Hua. Structural optimization of Fen-Ptm (5 n+m 24) alloy clusters based on an improved Basin-Hopping Monte Carlo algorithm. Acta Physica Sinica, 2017, 66(5): 053601. doi: 10.7498/aps.66.053601
    [3] Shao Gui-Fang, Zheng Wen-Xin, Tu Na-Na, Liu Tun-Dong, Wen Yu-Hua. Investigation on stable structures of Au-Pd alloy nanoparticles with high-index facets. Acta Physica Sinica, 2015, 64(1): 013602. doi: 10.7498/aps.64.013602
    [4] Chang Hong-Wei, Ma Hua, Zhang Jie-Qiu, Zhang Zhi-Yuan, Xu Zhuo, Wang Jia-Fu, Qu Shao-Bo. Optimization of metamaterial based weighted real-coded genetic algorithm. Acta Physica Sinica, 2014, 63(8): 087804. doi: 10.7498/aps.63.087804
    [5] Li Peng-Fei, Zhang Yan-Ge, Lei Xue-Ling, Pan Bi-Cai. Stable structures of Ge65, Ge70, Ge75 and their electronic properties. Acta Physica Sinica, 2013, 62(14): 143602. doi: 10.7498/aps.62.143602
    [6] Liu Tun-Dong, Chen Jun-Ren, Hong Wu-Peng, Shao Gui-Fang, Wang Ting-Na, Zheng Ji-Wen, Wen Yu-Hua. Particle swarm optimization investigation of stable structures of Pt-Pd alloy nanoparticles. Acta Physica Sinica, 2013, 62(19): 193601. doi: 10.7498/aps.62.193601
    [7] He Ran, Huang Si-Xun, Zhou Chen-Teng, Jiang Zhu-Hui. Genetic algorithm with regularization method to retrieve ocean atmosphere duct. Acta Physica Sinica, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [8] Zu Yun-Xiao, Zhou Jie. Cognitive radio resource allocation based on combined chaotic genetic algorithm. Acta Physica Sinica, 2011, 60(7): 079501. doi: 10.7498/aps.60.079501
    [9] Hu Xiao-Qin, Xie Guo-Feng. Optimization of shell model potential parameters of BaTiO3 by genetic algorithm. Acta Physica Sinica, 2011, 60(1): 013401. doi: 10.7498/aps.60.013401
    [10] Wang Jian-Bo, Lu Jun. Double screen frequency selective surface structure optimized by genetic algorithm. Acta Physica Sinica, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [11] Song Dan, Zhang Xiao-Lin. Study of the multi-system compatible receiver’s frequency selection problem based on fixed point theory and its genetic algorithm realization. Acta Physica Sinica, 2010, 59(9): 6697-6705. doi: 10.7498/aps.59.6697
    [12] E Xiao-Liang, Duan Hai-Ming. Study of the structure evolution and ground state energy of ConCu55-n(n=0—55) bimetallic clusters by using the Gupta potential combined with a genetic algorithm. Acta Physica Sinica, 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [13] Zhao Zhi-Jin, Xu Shi-Yu, Zheng Shi-Lian, Yang Xiao-Niu. Cognitive radio decision engine based on binary particle swarm optimization. Acta Physica Sinica, 2009, 58(7): 5118-5125. doi: 10.7498/aps.58.5118
    [14] Cheng Xing-Hua, Tang Long-Gu, Chen Zhi-Tao, Gong Min, Yu Tong-Jun, Zhang Guo-Yi, Shi Rui-Ying. A genetic algorithm research on Lorentz oscillator model in infrared spectra of GaMnN. Acta Physica Sinica, 2008, 57(9): 5875-5880. doi: 10.7498/aps.57.5875
    [15] Niu Pei_Feng, Zhang Jun, Guan Xin_Ping. Research on a proportional-integral-derivative neural network decoupling control based on genetic algorithm optimization for unified chaotic system. Acta Physica Sinica, 2007, 56(5): 2493-2497. doi: 10.7498/aps.56.2493
    [16] Lin Hai, Wu Chen-Xu. Evolution of strategies based on genetic algorithm in the iterated prisoner’s dilemma on complex networks. Acta Physica Sinica, 2007, 56(8): 4313-4318. doi: 10.7498/aps.56.4313
    [17] Gong Chun-Juan, Hu Xiong-Wei. Design of triangular lattice photonic crystals using genetic algorithms. Acta Physica Sinica, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [18] Wang Dong-Feng. Genetic algorithm optimization based proportional-integral-derivative controller for unified chaotic system. Acta Physica Sinica, 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
    [19] Bao Wen-Xing, Zhu Chang-Chun, Cui Wan-Zhao. Study of structure optimization of carbon nanotubes using hybrid genetic algorithm based on clonal selection principle. Acta Physica Sinica, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
    [20] Wu Zhong-Qiang, Ao Dun, Liu Kun. Fuzzy control of a chaotic system based on genetic algorithm. Acta Physica Sinica, 2004, 53(1): 21-24. doi: 10.7498/aps.53.21
Metrics
  • Abstract views:  6319
  • PDF Downloads:  221
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2014
  • Accepted Date:  06 April 2015
  • Published Online:  05 August 2015

/

返回文章
返回