搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进Basin-Hopping Monte Carlo算法的Fen-Ptm(5 n+m 24)合金团簇结构优化

刘暾东 李泽鹏 季清爽 邵桂芳 范天娥 文玉华

引用本文:
Citation:

基于改进Basin-Hopping Monte Carlo算法的Fen-Ptm(5 n+m 24)合金团簇结构优化

刘暾东, 李泽鹏, 季清爽, 邵桂芳, 范天娥, 文玉华

Structural optimization of Fen-Ptm (5 n+m 24) alloy clusters based on an improved Basin-Hopping Monte Carlo algorithm

Liu Tun-Dong, Li Ze-Peng, Ji Qing-Shuang, Shao Gui-Fang, Fan Tian-E, Wen Yu-Hua
PDF
导出引用
  • 合金纳米团簇可以充分利用多种金属的协同效应来实现材料的多功能特性,因而备受关注.本文利用改进的Basin-Hopping Monte Carlo算法研究了不同尺寸和不同比例下的Fe-Pt二元合金团簇的结构稳定性.为证明初始结构相关性,引入了相似函数来分析合金团簇稳定结构与其对应的单金属团簇结构之间的相似性,并分析了Fe-Pt合金团簇在稳定结构下的元素分布.研究结果表明:对于N 24的Fe-Pt合金团簇,其结构并没有随原子数的增长呈现出明显的形状变化.但是就原子分布而言,对于相同尺寸下不同比例的原子结构,Fe元素趋向于分布在外层,而Pt元素更趋向于分布在内层;对于相同比例不同尺寸的原子结构也得到了同样的结论,并且在Fe原子比例越大的情况下,这种趋向的分布越明显.此外,通过计算合金团簇与单一金属团簇的结构相似函数,发现N 24的Fe-Pt合金团簇在吸收Fe单金属和Pt单金属基态结构的基础上,随着元素比例的变化,发生了不同于单金属基态结构的变化,并且不同比例结构差异较大.最后,通过计算Fe-Pt合金团簇能量的二阶有限差分值,在Fe-Pt表现出分离结构状态时找到了相对稳定度最好的稳定结构.
    Alloy nanoclusters have received extensive attention because they can achieve bifunctional properties by making good use of the cooperative effect of two metals. In this paper, an improved Basin-Hopping Monte Carlo (BHMC) algorithm is proposed to investigate the structural stabilities of Fe-Pt alloy nanoclusters. Different cluster sizes and chemical compositions are considered. Moreover, a similarity function is introduced to analyze the structural similarity between the stable structures of alloy clusters and those of their monometallic clusters. Meanwhile, the atomic distributions of Fe-Pt alloy clusters are considered for their stable structures. The results indicate that for Fe-Pt alloy clusters with the size N 24, there is no significant structural evolution with the increase of cluster size. Fe atoms prefer to segregate at the peripheral positions of the clusters, while Pt atoms tend to occupy the interior. The same distribution result can be obtained for the structures of clusters with different compositions. With Fe composition increasing, this distribution trend is more pronounced for the Fe-Pt alloy clusters. In addition, by calculating the structural similarity function between alloy and monometallic clusters, we find that the stable structures of Fe-Pt alloy clusters gradually vary with composition ratio. Moreover, when the Fe atoms or Pt atoms are added into the Fe-Pt alloy system, they change the stable structures of Fe-Pt alloy clusters, resulting in a different structure from Fe and Pt monometallic ones. Also, the structural similarity is different when the Fe composition varies. Furthermore, the best stable structures of Fe-Pt clusters with different compositions and sizes are obtained by calculating the second-order finite difference in energy of Fe-Pt alloy clusters.
      通信作者: 邵桂芳, gfshao@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11474234,51271156,61403318)和中央高校基本科研业务费(批准号:20720160085)资助的课题.
      Corresponding author: Shao Gui-Fang, gfshao@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474234, 51271156, 61403318) and the Fundamental Research Fund for the Central Universities, China (Grant No. 20720160085).
    [1]

    Baletto F, Ferrando R 2005Rev.Mod.Phys. 77 371

    [2]

    Balamurugan B, Maruyama T 2005Appl.Phys.Lett. 87 143105

    [3]

    Koenigsmann C, Santulli A C, Gong K, Vukmirovic M B, Zhou W, Sutter E, Wong S S, Adzic R R 2011J.Am.Chem.Soc. 133 9783

    [4]

    Soares A V H, Perez G, Passos F B 2016Appl.Catal.B 185 77

    [5]

    Xiao S, Hu W, Luo W, Wu Y, Li X, Deng H 2006Eur.Phys.J. 54 479

    [6]

    Liu T D, Fan T E, Zheng J W, Shao G F, Sun Q, Wen Y H 2016J.Nanopart.Res. 77 2

    [7]

    Cheng D J, Huang S P, Wang W C 2006Chem.Phys. 330 423

    [8]

    Kim H G, Choi S K, Lee H M 2008J.Chem.Phys. 128 144702

    [9]

    Zhan L, Piwowar B, Liu W K, Hsu P J, Lai S K, Chen J Z 2004J.Chem.Phys. 120 5536

    [10]

    Wales D J, Doye J P K 1997J.Phys.Chem.A 101 5111

    [11]

    Cheng L, Feng Y, Yang J, Yang J 2009J.Chem.Phys. 130 214112

    [12]

    Rondina G G, Da Silva J L F 2013J.Chem.Inf.Model. 53 2282

    [13]

    Ruette F, Gonzlez C 2002Chem.Phys.Lett. 359 428

    [14]

    E X L, Duan H M 2010Acta Phys.Sin. 59 5672(in Chinese)[鄂箫亮, 段海明2010物理学报59 5672]

    [15]

    Liu L, E X L, Duan H M 2011J.At.Mol.Phys. 28 459(in Chinese)[刘莉, 鄂箫亮, 段海明2011原子与分子物理学报28 459]

    [16]

    Ren L, Cheng L, Feng Y, Wang X 2012J.Chem.Phys. 137 014309

    [17]

    Shao X, Cheng L, Cai W 2004J.Comput.Chem. 25 1693

    [18]

    Cleri F, Rosato V 1993Phys.Rev.B 48 22

    [19]

    Darby S, Mortimer-Jones T V, Johnston R L, Roberts C 2002J.Chem.Phys. 116 1536

    [20]

    Chen Z, Jiang X, Li J, Li S, Wang L 2013J.Comput.Chem. 34 1046

    [21]

    Varas A, Aguilera-Granja F, Rogan J, Kiwi M 2015J.Magn.Magn.Mater. 394 325

    [22]

    Huang R, Wen Y H, Shao G F, Sun S G 2016Phys.Chem.Chem.Phys. 18 1701

    [23]

    Chen Z, Jiang X, Li J, Li S 2013J.Phys.Chem. 138 214303

    [24]

    Rossi G, Ferrando R 2009J.Phys.Condens.Matter 21 084208

    [25]

    Hristova E, Dong Y, Grigoryan V G, Springborg M 2008J.Phys.Chem.A 112 7905

    [26]

    Hristova E, Grigoryan V G, Springborg M 2008J.Chem.Phys. 128 244513

  • [1]

    Baletto F, Ferrando R 2005Rev.Mod.Phys. 77 371

    [2]

    Balamurugan B, Maruyama T 2005Appl.Phys.Lett. 87 143105

    [3]

    Koenigsmann C, Santulli A C, Gong K, Vukmirovic M B, Zhou W, Sutter E, Wong S S, Adzic R R 2011J.Am.Chem.Soc. 133 9783

    [4]

    Soares A V H, Perez G, Passos F B 2016Appl.Catal.B 185 77

    [5]

    Xiao S, Hu W, Luo W, Wu Y, Li X, Deng H 2006Eur.Phys.J. 54 479

    [6]

    Liu T D, Fan T E, Zheng J W, Shao G F, Sun Q, Wen Y H 2016J.Nanopart.Res. 77 2

    [7]

    Cheng D J, Huang S P, Wang W C 2006Chem.Phys. 330 423

    [8]

    Kim H G, Choi S K, Lee H M 2008J.Chem.Phys. 128 144702

    [9]

    Zhan L, Piwowar B, Liu W K, Hsu P J, Lai S K, Chen J Z 2004J.Chem.Phys. 120 5536

    [10]

    Wales D J, Doye J P K 1997J.Phys.Chem.A 101 5111

    [11]

    Cheng L, Feng Y, Yang J, Yang J 2009J.Chem.Phys. 130 214112

    [12]

    Rondina G G, Da Silva J L F 2013J.Chem.Inf.Model. 53 2282

    [13]

    Ruette F, Gonzlez C 2002Chem.Phys.Lett. 359 428

    [14]

    E X L, Duan H M 2010Acta Phys.Sin. 59 5672(in Chinese)[鄂箫亮, 段海明2010物理学报59 5672]

    [15]

    Liu L, E X L, Duan H M 2011J.At.Mol.Phys. 28 459(in Chinese)[刘莉, 鄂箫亮, 段海明2011原子与分子物理学报28 459]

    [16]

    Ren L, Cheng L, Feng Y, Wang X 2012J.Chem.Phys. 137 014309

    [17]

    Shao X, Cheng L, Cai W 2004J.Comput.Chem. 25 1693

    [18]

    Cleri F, Rosato V 1993Phys.Rev.B 48 22

    [19]

    Darby S, Mortimer-Jones T V, Johnston R L, Roberts C 2002J.Chem.Phys. 116 1536

    [20]

    Chen Z, Jiang X, Li J, Li S, Wang L 2013J.Comput.Chem. 34 1046

    [21]

    Varas A, Aguilera-Granja F, Rogan J, Kiwi M 2015J.Magn.Magn.Mater. 394 325

    [22]

    Huang R, Wen Y H, Shao G F, Sun S G 2016Phys.Chem.Chem.Phys. 18 1701

    [23]

    Chen Z, Jiang X, Li J, Li S 2013J.Phys.Chem. 138 214303

    [24]

    Rossi G, Ferrando R 2009J.Phys.Condens.Matter 21 084208

    [25]

    Hristova E, Dong Y, Grigoryan V G, Springborg M 2008J.Phys.Chem.A 112 7905

    [26]

    Hristova E, Grigoryan V G, Springborg M 2008J.Chem.Phys. 128 244513

  • [1] 姜贝贝, 王清, 董闯. 基于固溶体短程序结构的团簇式合金成分设计方法. 物理学报, 2017, 66(2): 026102. doi: 10.7498/aps.66.026102
    [2] 何长春, 廖继海, 杨小宝. 平面团簇稳定结构的蒙特卡罗树搜索. 物理学报, 2017, 66(16): 163601. doi: 10.7498/aps.66.163601
    [3] 吴夏, 魏征. 基于内核构建的Cu-Au-Pd团簇稳定结构优化. 物理学报, 2017, 66(15): 150202. doi: 10.7498/aps.66.150202
    [4] 洪海莲, 董闯, 王清, 张宇, 耿遥祥. 面心立方固溶体合金的团簇加连接原子几何模型及典型工业合金成分解析. 物理学报, 2016, 65(3): 036101. doi: 10.7498/aps.65.036101
    [5] 徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁. 金属目标原子晶格结构对其量子雷达散射截面的影响. 物理学报, 2015, 64(15): 154203. doi: 10.7498/aps.64.154203
    [6] 邵桂芳, 郑文馨, 涂娜娜, 刘暾东, 文玉华. 高指数晶面Au-Pd纳米合金粒子的稳定结构研究. 物理学报, 2015, 64(1): 013602. doi: 10.7498/aps.64.013602
    [7] 李铁军, 孙跃, 郑骥文, 邵桂芳, 刘暾东. 基于遗传算法的Au-Cu-Pt三元合金纳米粒子的稳定结构研究. 物理学报, 2015, 64(15): 153601. doi: 10.7498/aps.64.153601
    [8] 吕瑾, 秦健萍, 武海顺. ConAl (n= 18)合金团簇结构和磁性质研究. 物理学报, 2013, 62(5): 053101. doi: 10.7498/aps.62.053101
    [9] 刘暾东, 陈俊仁, 洪武鹏, 邵桂芳, 王婷娜, 郑骥文, 文玉华. 基于粒子群算法的Pt-Pd合金纳米粒子的稳定结构研究. 物理学报, 2013, 62(19): 193601. doi: 10.7498/aps.62.193601
    [10] 李鹏飞, 张艳革, 雷雪玲, 潘必才. 锗团簇Ge65, Ge70, Ge75的稳定结构及其电子结构性质. 物理学报, 2013, 62(14): 143602. doi: 10.7498/aps.62.143602
    [11] 陈季香, 羌建兵, 王清, 董闯. 以最大原子密度定义合金相中的第一近邻团簇. 物理学报, 2012, 61(4): 046102. doi: 10.7498/aps.61.046102
    [12] 郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯. 体心立方固溶体合金中的团簇+连接原子结构模型. 物理学报, 2011, 60(11): 116101. doi: 10.7498/aps.60.116101
    [13] 邵琛玮, 王振华, 李艳男, 赵骞, 张林. AuCu249合金团簇热稳定性的原子尺度计算研究. 物理学报, 2011, 60(8): 083602. doi: 10.7498/aps.60.083602
    [14] 郑晓军, 张俊, 黄忠兵. 扩展哈伯德模型中原子团簇的结构和热力学性质研究. 物理学报, 2010, 59(6): 3897-3904. doi: 10.7498/aps.59.3897
    [15] 张林, 徐送宁, 李蔚, 孙海霞, 张彩碚. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究. 物理学报, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [16] 林秋宝, 李仁全, 文玉华, 朱梓忠. Wn(n=3—27)原子团簇结构的第一性原理计算. 物理学报, 2008, 57(1): 181-185. doi: 10.7498/aps.57.181
    [17] 王晓秋, 王保林. 嵌入La和Gd原子的Si24笼团簇的稳定性. 物理学报, 2008, 57(10): 6259-6264. doi: 10.7498/aps.57.6259
    [18] 李公平, 张梅玲. 铜团簇(n=55)结构及能量随温度演变的Monte Carlo 模拟研究. 物理学报, 2005, 54(6): 2873-2876. doi: 10.7498/aps.54.2873
    [19] 罗成林, 周延怀, 张 益. 镍原子团簇几何结构的紧束缚方法模拟 . 物理学报, 2000, 49(1): 54-56. doi: 10.7498/aps.49.54
    [20] 黎军, 仝晓民, 李家明. 钴原子团簇电子结构的理论研究. 物理学报, 1995, 44(11): 1727-1733. doi: 10.7498/aps.44.1727
计量
  • 文章访问数:  6099
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-04
  • 修回日期:  2016-12-08
  • 刊出日期:  2017-03-05

/

返回文章
返回