Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of anisotropic diffusion model based on pulse coupled neural network and image entropy

Guo Ye-Cai Zhou Lin-Feng

Citation:

Study of anisotropic diffusion model based on pulse coupled neural network and image entropy

Guo Ye-Cai, Zhou Lin-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In image processing, most of the anisotropic diffusion models based on partial differential equation use gradient information to detect image edge. If the image edge is seriously polluted by noise, these methods would not be able to detect image edge, so the edge features cannot be retained. Pulse coupled neural network (PCNN) has the property that similar input neurons can generate pulse at the same time; this property is used to process the noisy image, and we can get an image entropy sequence. The image entropy sequence which will be used as an edge detecting operator is introduced into the diffusion equation, and this will not only reduce the defects produced when the gradient is used as an edge detecting operator so it is easily affected by the noise, but the area image information can also retain more completely. Then, we will use the rule of minimum cross entropy to search for a minimum threshold, which would satisfy the condition that the information difference between noisy image and denoised image is the minimum. The optimal threshold designed will control diffusion intensity reasonably, and the anisotropic diffusion model based on pulse coupled neural network and image entropy (PCNN-IEAD) can be established. Analysis and simulation results show that the proposed model preserves more image information than the classical ones. It removes the image noise and at the same time protects the edge texture details of the image; the proposed model retains the area image information more completely, the performance indexes can also confirm the superiority of the new model. In addition, the operating time of the proposed model is shorter than that of the classical models, therefore, the proposed model may be the ideal one.
      Corresponding author: Guo Ye-Cai, guo-yecai@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11202106, 61201444), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123228120005), the Jiangsu Information and Communication Engineering Preponderant Discipline Platform, China, Jiangsu Key Laboratory of Meteorological Observation and Information Processing (Grant Nos. KDXS1204, KDXS1403), the Jiangsu Qing Lan Project and the Natural Sciences Fundation from the Universities of Jiangsu Province of China (Grant No. 13KJB170016).
    [1]

    Zhang W, Li J J, Yang Y P 2014 Signal Process 103 6

    [2]

    Chumchob N 2013 IEEE Trans. Image Process 22 4551

    [3]

    Wu T T, Yang Y F, Pang Z F 2012 Appl. Numer. Math. 62 79

    [4]

    Wu J, Tang C 2011 IEEE Trans. Image Process 20 2428

    [5]

    Brito-Loeza C, Chen K 2010 IEEE Trans. Image Process 19 1518

    [6]

    Wang Z, Huang X, Li Y X, Song X N 2013 Chin. Phys. B 22 010504

    [7]

    Perona P, Malik J 1990 IEEE Trans. Pattern Anal. Mach. Intell. 12 629

    [8]

    Rudin L I, Osher S, Fatemi E 1992 Physica D 60 259

    [9]

    Cheng L Y, Tang C, Yan S 2011 Optics Communications 284 5549

    [10]

    Liu P, Fang H, Li G Q, Liu Z W 2012 IEEE Geosci. Remote Sens. 9 358

    [11]

    Niang O, Thioune A, Gueirea M C 2012 IEEE Trans. Image Process 21 3991

    [12]

    Bumsub H, Dongbo M, Kwanghoon So 2013 IEEE Trans. Image Process 22 1096

    [13]

    Zhou X C, Wang M L, Zhou L F, Wu Q 2015 Acta Phys. Sin. 64 024205(in Chinese) [周先春, 汪美玲, 周林锋, 吴琴 2015 物理学报 64 024205]

    [14]

    Zhou X C, Shi L F, Han X L, Mo J Q 2014 Chin. Phys. B 23 090204

    [15]

    Zhou X C, Shi L F, Mo J Q 2014 Chin. Phys. B 23 040202

    [16]

    Zhang Y H, Ding Y, Wang L H 2011 Procedia Engineering 15 2778

    [17]

    Li J C, Ma Z H, Peng Y X, Huang B 2013 Acta Phys. Sin. 62 099501(in Chinese) [李金才, 马自辉, 彭宇行, 黄斌 2013 物理学报 62 099501]

    [18]

    Zhang K K, Gao X B, Li X L 2012 IEEE Trans. Image Process 21 4544

    [19]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Process 16 2080

    [20]

    Deledalle C A, Denis L, Tupin F 2009 IEEE Trans. Image Process 18 2661

    [21]

    Nikpour M, Hassanpour H 2010 IET Image Process 4 452

    [22]

    Kamilov, Bostan E, Unser M 2012 IEEE Signal Process Lett. 19 187

    [23]

    Johnson J L, Padgett M L 1999 IEEE Trans. Neural Netw. 10 480

    [24]

    Ranganath H S, Kuntimad G 1999 IEEE Trans. Neural Netw. 10 615

    [25]

    Weickert J, Bary H R, Max A V 1998 IEEE Trans. Image Process 7 398

    [26]

    Canny J 1986 IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8 679

  • [1]

    Zhang W, Li J J, Yang Y P 2014 Signal Process 103 6

    [2]

    Chumchob N 2013 IEEE Trans. Image Process 22 4551

    [3]

    Wu T T, Yang Y F, Pang Z F 2012 Appl. Numer. Math. 62 79

    [4]

    Wu J, Tang C 2011 IEEE Trans. Image Process 20 2428

    [5]

    Brito-Loeza C, Chen K 2010 IEEE Trans. Image Process 19 1518

    [6]

    Wang Z, Huang X, Li Y X, Song X N 2013 Chin. Phys. B 22 010504

    [7]

    Perona P, Malik J 1990 IEEE Trans. Pattern Anal. Mach. Intell. 12 629

    [8]

    Rudin L I, Osher S, Fatemi E 1992 Physica D 60 259

    [9]

    Cheng L Y, Tang C, Yan S 2011 Optics Communications 284 5549

    [10]

    Liu P, Fang H, Li G Q, Liu Z W 2012 IEEE Geosci. Remote Sens. 9 358

    [11]

    Niang O, Thioune A, Gueirea M C 2012 IEEE Trans. Image Process 21 3991

    [12]

    Bumsub H, Dongbo M, Kwanghoon So 2013 IEEE Trans. Image Process 22 1096

    [13]

    Zhou X C, Wang M L, Zhou L F, Wu Q 2015 Acta Phys. Sin. 64 024205(in Chinese) [周先春, 汪美玲, 周林锋, 吴琴 2015 物理学报 64 024205]

    [14]

    Zhou X C, Shi L F, Han X L, Mo J Q 2014 Chin. Phys. B 23 090204

    [15]

    Zhou X C, Shi L F, Mo J Q 2014 Chin. Phys. B 23 040202

    [16]

    Zhang Y H, Ding Y, Wang L H 2011 Procedia Engineering 15 2778

    [17]

    Li J C, Ma Z H, Peng Y X, Huang B 2013 Acta Phys. Sin. 62 099501(in Chinese) [李金才, 马自辉, 彭宇行, 黄斌 2013 物理学报 62 099501]

    [18]

    Zhang K K, Gao X B, Li X L 2012 IEEE Trans. Image Process 21 4544

    [19]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Process 16 2080

    [20]

    Deledalle C A, Denis L, Tupin F 2009 IEEE Trans. Image Process 18 2661

    [21]

    Nikpour M, Hassanpour H 2010 IET Image Process 4 452

    [22]

    Kamilov, Bostan E, Unser M 2012 IEEE Signal Process Lett. 19 187

    [23]

    Johnson J L, Padgett M L 1999 IEEE Trans. Neural Netw. 10 480

    [24]

    Ranganath H S, Kuntimad G 1999 IEEE Trans. Neural Netw. 10 615

    [25]

    Weickert J, Bary H R, Max A V 1998 IEEE Trans. Image Process 7 398

    [26]

    Canny J 1986 IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8 679

  • [1] Yang Guang, Chao Su-Ya, Nie Min, Liu Yuan-Hua, Zhang Mei-Ling. Construction method of hybrid quantum long-short term memory neural network for image classification. Acta Physica Sinica, 2023, 72(5): 058901. doi: 10.7498/aps.72.20221924
    [2] Xu Zi-Heng, He Yu-Zhu, Kang Yan-Mei. Color image perception based on stochastic spiking neural network. Acta Physica Sinica, 2022, 71(7): 070501. doi: 10.7498/aps.71.20211982
    [3] Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng. Phase retrieval wavefront sensing based on image fusion and convolutional neural network. Acta Physica Sinica, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [4] Lang Li-Ying, Lu Jia-Lei, Yu Na-Na, Xi Si-Xing, Wang Xue-Guang, Zhang Lei, Jiao Xiao-Xue. In depth learning based method of denoising joint transform correlator optical image encryption system. Acta Physica Sinica, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [5] Huang Zhi-Jing, Li Qian-Yun, Bai Jing, Tang Guo-Ning. Entropy measurement of ordered patterns in neuronal network with repulsive coupling. Acta Physica Sinica, 2019, 68(11): 110503. doi: 10.7498/aps.68.20190231
    [6] Dou Jian-Tai, Gao Zhi-Shan, Ma Jun, Yuan Cao-Jin, Yang Zhong-Ming. Correction of axial distance error in ptychography based on image information entropy. Acta Physica Sinica, 2017, 66(16): 164203. doi: 10.7498/aps.66.164203
    [7] Zhou Xian-Chun, Wang Mei-Ling, Zhou Lin-Feng, Wu Qin. Image denoising model based on the improved Demons algorithm. Acta Physica Sinica, 2015, 64(2): 024205. doi: 10.7498/aps.64.024205
    [8] Zhou Xian-Chun, Wang Mei-Ling, Shi Lan-Fang, Zhou Lin-Feng. Diffusion denoising model based on the wavelet and biharmonic equation. Acta Physica Sinica, 2015, 64(6): 064203. doi: 10.7498/aps.64.064203
    [9] Zhou Xian-Chun, Wang Mei-Ling, Shi Lan-Fang, Zhou Lin-Feng, Wu Qin. Image smoothing model based on the combination of the gradient and curvature. Acta Physica Sinica, 2015, 64(4): 044201. doi: 10.7498/aps.64.044201
    [10] Liu Yu-Dong, Wang Lian-Ming. Application of memristor-based spiking neural network in image edge extraction. Acta Physica Sinica, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [11] Zhou Jian-Zhong, Chen Bao-Xue, Li Jia-Wei, Wang Guan-De, Hiromi Hamanaka. Study on pulse coupler of optical waveguide. Acta Physica Sinica, 2014, 63(1): 014211. doi: 10.7498/aps.63.014211
    [12] Li Jin-Cai, Ma Zi-Hui, Peng Yu-Xing, Huang Bin. Speckle reduction by image entropy anisotropic diffusion. Acta Physica Sinica, 2013, 62(9): 099501. doi: 10.7498/aps.62.099501
    [13] Zhang Hua, Xu Lu-Ping. Minimum entropy cumulation method of pulsar profile. Acta Physica Sinica, 2011, 60(3): 039701. doi: 10.7498/aps.60.039701
    [14] Yang Wei, Zhang Yu, Xie Ying-Hai. Minimum-energy frame of discrete signal space and its de-noising application to rectangular pulse signal. Acta Physica Sinica, 2010, 59(11): 8255-8263. doi: 10.7498/aps.59.8255
    [15] Wu Yi-Quan, Zhang Jin-Kuang. Image thresholding based on θ-division of 2-D histogram and maximum Shannon entropy. Acta Physica Sinica, 2010, 59(8): 5487-5495. doi: 10.7498/aps.59.5487
    [16] Tang Ying-Gan, Di Qiu-Yan, Zhao Li-Xing, Guan Xin-Ping, Liu Fu-Cai. Image thresholding segmentation based on two-dimensional minimum Tsallis-cross entropy. Acta Physica Sinica, 2009, 58(1): 9-15. doi: 10.7498/aps.58.9
    [17] Dong Ji-Yang, Zhang Jun-Ying, Chen Zhong. Autowave-competition neural network and its application to the single-source shortest-paths problem. Acta Physica Sinica, 2007, 56(9): 5013-5020. doi: 10.7498/aps.56.5013
    [18] OU FA. THE THEOREM OF MINIMUM ENTROPY PRODUCTION AND PASSIVE OPTICAL CAVITIES. Acta Physica Sinica, 1990, 39(7): 40-47. doi: 10.7498/aps.39.40-2
    [19] LI RU-SHENG. THE THEOREM OF MINIMUM ENTROPY PRODUCTION AND STABILITY OF STATIONARY STATES. Acta Physica Sinica, 1985, 34(7): 956-959. doi: 10.7498/aps.34.956
    [20] CHEN SHI-GANG. GLANSDORFF-PRIGOGINE CRITERION AND THEOREM OF MINIMUM ENTROPY PRODUCTION. Acta Physica Sinica, 1980, 29(10): 1315-1322. doi: 10.7498/aps.29.1315
Metrics
  • Abstract views:  6112
  • PDF Downloads:  220
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2015
  • Accepted Date:  11 May 2015
  • Published Online:  05 October 2015

/

返回文章
返回