Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of flow rate on the characteristics of repetitive microsecond-pulse gliding discharges

Niu Zong-Tao Zhang Cheng Ma Yun-Fei Wang Rui-Xue Chen Gen-Yong Yan Ping Shao Tao

Citation:

Effect of flow rate on the characteristics of repetitive microsecond-pulse gliding discharges

Niu Zong-Tao, Zhang Cheng, Ma Yun-Fei, Wang Rui-Xue, Chen Gen-Yong, Yan Ping, Shao Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Gliding discharges driven by microsecond-pulse power supply can generate non-thermal plasmas with high energy and high power density at atmospheric pressure. However, the flowing air significantly influences the characteristics of the microsecond-pulse gliding discharges in a repetitive mode. In this paper, in order to obtain the characteristics of the microsecond-pulse gliding discharges in a needle-to-needle gap, a microsecond-pulse power supply with an output voltage up to 30 kV, a pulse width 8 s, and a pulse repetition frequencies 1 Hz 3000 Hz is used to investigate the electrical characteristics of gliding discharges by analyzing the voltage-current waveforms and obtaining the discharge images. Experimental results show that there are three typical discharge modes in the microsecond-pulse gliding discharges as the applied voltage increases, i.e. corona discharge, diffuse discharge, and gliding-like discharge. Both voltage-current waveforms and the discharge images at different discharge modes have significantly different behaviors. Corona discharge only exists near the positive electrode with a small radius of curvature. Diffuse discharges behave as the overlapped plasma channels bridge the entire gap. The channel of diffuse discharge is full of gap, which starts from the positive electrode, spreads in all directions, and ends at the negative electrode. Gliding-like discharge behaves as a continuous spark channeling, showing a continuous spark, which is discharging strongly and influenced by flow rates. Furthermore, both pulse repetition frequency (PRF) and flow rate remarkably affects the characteristics of microsecond-pulse gliding discharges. When the flow rate is small (2 L/min), the spark channels of gliding-like discharge gradually concentrate with the increase of the PRF. However, when the flow rate is larger (16 L/min), the spark channels of gliding-like discharge behave dispersively when the PRF increases. In our opinion, different characteristics of microsecond-pulse gliding discharge at different flow rates are closely related to the memory effect of the residual particles in the discharges and the state of the air flow. When the flow rate is small (2 L/min), the air flow is stable, and the discharge is generated in a laminar flow state. In this case, the memory effect of particles in repetitive microsecond-pulse gliding discharges dominates the formation of the discharges. These particles could enhance the electric field strength for the next pulse. Because the time interval between two pulses at high PRF is shorter than that at low PRF, there are fewer particles leaving the air gap at high PRF. Thus, memory effect is more significant at high PRF. As a result, the channel of spark discharge concentrates with the increase of the PRF. When the flow rate increases to 16 L/min, the calculated Reynolds number increases to 2864, indicating the transition from laminar state to turbulence state. The residual particles are more likely to escape from the gap. Thus, memory effect slightly affects the characteristics of the microsecond-pulse gliding discharges. In this case, the state of the air flow dominates the formation of the discharge. The spark channels spread towards the top in the direction of the gas flow, making the region of the spark channels gradually disperse as the PRF increases.
      Corresponding author: Zhang Cheng, zhangcheng@mail.iee.ac.cn;st@mail.iee.ac.cn ; Shao Tao, zhangcheng@mail.iee.ac.cn;st@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51222701, 51477164).
    [1]

    Mutaf Y O, Saveliev A V, Fridman A A, Kennedy L A 2000 J. Appl. Phys. 87 041632

    [2]

    Zhu J J, Sun Z W, Li Z S, Ehn A, Aldn M, Salewski M, Leipold F, Kusano Y 2014 J. Phys. D: Appl. Phys. 47 295203

    [3]

    Korolev Y D, Frants O B, Geyman V G, Landl N V, Kasyanov V S 2011 IEEE Trans. Plasma Sci. 39 123319

    [4]

    Ni M, Yu L, Li X, Tu X, Wang Y, Yan J 2011 Acta Phys. Sin. 60 015101(in Chinese) [倪明江, 余量, 李晓东, 屠昕, 汪宇, 严建华 2011 物理学报 60 015101]

    [5]

    Czernichowski A 1994 Pure Appl. Chem. 66 061301

    [6]

    Du C M, Yan J H 2007 IEEE Trans. Plasma Sci. 35 061648

    [7]

    Fridman A, Gutsol A, Gangoli S, Ju Y, Ombrello T 2008 J. Propul. Power 24 061216

    [8]

    Kalra C S, Gutsol A F, Fridman A A 2005 IEEE Trans. Plasma Sci. 33 0132

    [9]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf Y O 1998 Prog. Energ. Combust. 25 0211

    [10]

    Wright K C, Kim H S, Cho D J, Rabinovich A, Fridman A, Cho Y I 2014 Desalination 345 64

    [11]

    Nunnally T, Tsangaris A, Rabinovich A, Nirenberg G, Chernets I, Fridman A 2014 Int. J. Hydrogen Energ. 39 2311976

    [12]

    Zhang C, Shao T, Xu J, Ma H, Duan L, Ren C, Yan, P 2012 IEEE Trans. Plasma Sci. 40 112843

    [13]

    Xu J, Zhang C, Shao T, Duan L, Ren C, Yan P 2012 High Voltage Engineering 38 071803 (in Chinese) [许家雨, 章程, 邵涛, 段立伟, 任成燕, 严萍 2012 高电压技术 38 071803]

    [14]

    Zhu J, Gao J, Li Z, Ehn A, Aldn M, Larsson A, Kusano Y 2014 Appl. Phys. Lett. 105 234102

    [15]

    Shao T, Zhang C, Long K, Wang J, Zhang D, Yan P 2010 Chin. Phys. B 19 040601

    [16]

    Zhang C, Shao T, Niu Z, Zhang D, Wang J, Yan P 2012 Acta Phys. Sin. 61 035202(in Chinese) [章程, 邵涛, 牛铮, 张东东, 王珏, 严萍 2012 物理学报 61 035202]

    [17]

    Shao T, Tarasenko V F, Yang W, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Plasma Sources Sci. Technol. 23 054018

    [18]

    Shao T, Yang W, Zhang C, Niu Z, Yan P, Schamiloglu E 2014 Appl. Phys. Lett. 105 071607

    [19]

    Shao T, Huang W, Li W, Zhang C, Zhou Y, Yan P, Schamiloglu, E 2014 IEEE Trans. Plasma Sci. 42 061721

    [20]

    Zhang C, Ma H, Shao Tao, Xie Q, Yang W, Yan P 2014 Acta Phys. Sin. 63 085208(in Chinese) [章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍 2014 物理学报 63 085208]

    [21]

    Pai D Z, Stancu G D, Lacoste D A, Laux C O 2009 Plasma Sources Sci. Technol. 18 045030

    [22]

    Pai D Z, Lacoste D A, Laux C O 2010 Plasma Sources Sci. Technol. 19 065015

    [23]

    Stauss S, Pai D Z, Shizuno T, Terashima K 2014 IEEE Trans. Plasma Sci. 42 06159

    [24]

    Pai D Z, Lacoste D A, Laux C O 2010 J. Appl. Phys. 107 093303

    [25]

    Korolev Y D, Frants O B, Landl N V, Bolotov A V, Nekhoroshev V O 2014 Plasma Sources Sci. Technol. 23 054016

    [26]

    Zhang C, Shao T, Yan P, Zhou Y 2014 Plasma Sources Sci. Technol. 23 035004

    [27]

    Zhang C, Shao T, Ma H, Ren C, Yan P, Zhou Y 2014 IEEE Trans. Plasma Sci. 42 102354

    [28]

    Liu X, He W, Yang F, Wang H, Liao R, Xiao H 2012 Chin. Phys. B 21 075201

    [29]

    Zhang C, Shao T, Yan P 2014 Chinese Science Bulletin 59 201919 (in Chinese) [章程, 邵涛, 严萍 2014 科学通报 59 201919]

    [30]

    Zhang H, Li F, Cao Y, Kunugi T, Yu B 2013 Chin. Phys. B 22 024703

  • [1]

    Mutaf Y O, Saveliev A V, Fridman A A, Kennedy L A 2000 J. Appl. Phys. 87 041632

    [2]

    Zhu J J, Sun Z W, Li Z S, Ehn A, Aldn M, Salewski M, Leipold F, Kusano Y 2014 J. Phys. D: Appl. Phys. 47 295203

    [3]

    Korolev Y D, Frants O B, Geyman V G, Landl N V, Kasyanov V S 2011 IEEE Trans. Plasma Sci. 39 123319

    [4]

    Ni M, Yu L, Li X, Tu X, Wang Y, Yan J 2011 Acta Phys. Sin. 60 015101(in Chinese) [倪明江, 余量, 李晓东, 屠昕, 汪宇, 严建华 2011 物理学报 60 015101]

    [5]

    Czernichowski A 1994 Pure Appl. Chem. 66 061301

    [6]

    Du C M, Yan J H 2007 IEEE Trans. Plasma Sci. 35 061648

    [7]

    Fridman A, Gutsol A, Gangoli S, Ju Y, Ombrello T 2008 J. Propul. Power 24 061216

    [8]

    Kalra C S, Gutsol A F, Fridman A A 2005 IEEE Trans. Plasma Sci. 33 0132

    [9]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf Y O 1998 Prog. Energ. Combust. 25 0211

    [10]

    Wright K C, Kim H S, Cho D J, Rabinovich A, Fridman A, Cho Y I 2014 Desalination 345 64

    [11]

    Nunnally T, Tsangaris A, Rabinovich A, Nirenberg G, Chernets I, Fridman A 2014 Int. J. Hydrogen Energ. 39 2311976

    [12]

    Zhang C, Shao T, Xu J, Ma H, Duan L, Ren C, Yan, P 2012 IEEE Trans. Plasma Sci. 40 112843

    [13]

    Xu J, Zhang C, Shao T, Duan L, Ren C, Yan P 2012 High Voltage Engineering 38 071803 (in Chinese) [许家雨, 章程, 邵涛, 段立伟, 任成燕, 严萍 2012 高电压技术 38 071803]

    [14]

    Zhu J, Gao J, Li Z, Ehn A, Aldn M, Larsson A, Kusano Y 2014 Appl. Phys. Lett. 105 234102

    [15]

    Shao T, Zhang C, Long K, Wang J, Zhang D, Yan P 2010 Chin. Phys. B 19 040601

    [16]

    Zhang C, Shao T, Niu Z, Zhang D, Wang J, Yan P 2012 Acta Phys. Sin. 61 035202(in Chinese) [章程, 邵涛, 牛铮, 张东东, 王珏, 严萍 2012 物理学报 61 035202]

    [17]

    Shao T, Tarasenko V F, Yang W, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Plasma Sources Sci. Technol. 23 054018

    [18]

    Shao T, Yang W, Zhang C, Niu Z, Yan P, Schamiloglu E 2014 Appl. Phys. Lett. 105 071607

    [19]

    Shao T, Huang W, Li W, Zhang C, Zhou Y, Yan P, Schamiloglu, E 2014 IEEE Trans. Plasma Sci. 42 061721

    [20]

    Zhang C, Ma H, Shao Tao, Xie Q, Yang W, Yan P 2014 Acta Phys. Sin. 63 085208(in Chinese) [章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍 2014 物理学报 63 085208]

    [21]

    Pai D Z, Stancu G D, Lacoste D A, Laux C O 2009 Plasma Sources Sci. Technol. 18 045030

    [22]

    Pai D Z, Lacoste D A, Laux C O 2010 Plasma Sources Sci. Technol. 19 065015

    [23]

    Stauss S, Pai D Z, Shizuno T, Terashima K 2014 IEEE Trans. Plasma Sci. 42 06159

    [24]

    Pai D Z, Lacoste D A, Laux C O 2010 J. Appl. Phys. 107 093303

    [25]

    Korolev Y D, Frants O B, Landl N V, Bolotov A V, Nekhoroshev V O 2014 Plasma Sources Sci. Technol. 23 054016

    [26]

    Zhang C, Shao T, Yan P, Zhou Y 2014 Plasma Sources Sci. Technol. 23 035004

    [27]

    Zhang C, Shao T, Ma H, Ren C, Yan P, Zhou Y 2014 IEEE Trans. Plasma Sci. 42 102354

    [28]

    Liu X, He W, Yang F, Wang H, Liao R, Xiao H 2012 Chin. Phys. B 21 075201

    [29]

    Zhang C, Shao T, Yan P 2014 Chinese Science Bulletin 59 201919 (in Chinese) [章程, 邵涛, 严萍 2014 科学通报 59 201919]

    [30]

    Zhang H, Li F, Cao Y, Kunugi T, Yu B 2013 Chin. Phys. B 22 024703

  • [1] He Liang, Peng Xue-Fang, Shen Xiao-Yu, Zhu Ren-Jiang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng. Low repetition rate passive mode-locked semiconductor disk laser. Acta Physica Sinica, 2024, 73(12): 124205. doi: 10.7498/aps.73.20240441
    [2] Yang Shuang-Yue, Wen Xiao-Qiong, Yang Yuan-Tian, Li Xiao. Discharge characteristics of a microsecond pulsed underwater streamer discharge in multi-needle electrode configuration. Acta Physica Sinica, 2024, 73(7): 075203. doi: 10.7498/aps.73.20231881
    [3] Lei Jian-Ping, He Li-Ming, Chen Yi, Chen Gao-Cheng, Zhao Bing-Bing, Zhao Zhi-Yu, Zhang Hua-Lei, Deng Jun, Fei Li. Experimental study on gliding discharge mode of rotating gliding arc discharge plasma. Acta Physica Sinica, 2020, 69(19): 195203. doi: 10.7498/aps.69.20200672
    [4] Liu Yi, Yang Jia, Li Xing, Gu Wei, Gao Zhi-Peng. Resistance of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 under high voltage microsecond pulse induced breakdown. Acta Physica Sinica, 2017, 66(11): 117701. doi: 10.7498/aps.66.117701
    [5] Xie Shi-Yong, Zhang Xiao-Fu, Le Xiao-Yun, Yang Cheng-Liang, Bo Yong, Wang Peng-Yuan, Xu Zu-Yan. A quasi-continuous dual-end 885 nm diode-pumped three-mirror ring-cavity laser operating at 1319 nm. Acta Physica Sinica, 2016, 65(15): 154205. doi: 10.7498/aps.65.154205
    [6] Liu Huan, Gong Ma-Li, Cao Shi-Ying, Lin Bai-Ke, Fang Zhan-Jun. A 303 MHz fundamental repetition rate femtosecond Er:fiber ring laser. Acta Physica Sinica, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [7] Peng Han, Liu Bin, Fu Song-Nian, Zhang Min-Ming, Liu De-Ming. Repetition rate optimization of passively mode-locked fiber laser for high-speed linear optical sampling. Acta Physica Sinica, 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [8] Dou Zhi-Yuan, Tian Jin-Rong, Li Ke-Xuan, Yu Zhen-Hua, Hu Meng-Ting, Huo Ming-Chao, Song Yan-Rong. High-repetition-rate passively mode-locked erbium-doped all fiber laser. Acta Physica Sinica, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [9] Jia Shi, Yu Jin-Long, Wang Ju, Wang Zi-Xiong, Chen Bin. Research of optical short pulse source with tunable repetition rate and ultra-low timing jitter. Acta Physica Sinica, 2015, 64(18): 184201. doi: 10.7498/aps.64.184201
    [10] Che Xue-Ke, Nie Wan-Sheng, Zhou Peng-Hui, He Hao-Bo, Tian Xi-Hui, Zhou Si-Yin. Study on continuous vortices induced by sub-microsecond pulsed surface dielectric barrier discharge plasma. Acta Physica Sinica, 2013, 62(22): 224702. doi: 10.7498/aps.62.224702
    [11] Zhang Cheng, Shao Tao, Niu Zheng, Zhang Dong-Dong, Wang Jue, Yan Ping. X-ray generation in repetitive pulsed discharge in atmospheric air with a point-to-plane gap. Acta Physica Sinica, 2012, 61(3): 035202. doi: 10.7498/aps.61.035202
    [12] Han Jing-Hua, Feng Guo-Ying, Yang Li-Ming, Zhang Qiu-Hui, Fu Yu-Qing, Niu Rui-Hua, Zhu Qi-Hua, Xie Xu-Dong, Zhou Shou-Huan. Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass. Acta Physica Sinica, 2011, 60(2): 028106. doi: 10.7498/aps.60.028106
    [13] Xie Xu-Dong, Zhu Qi-Hua, Zhang Qiu-Hui, Feng Guo-Ying, Han Jing-Hua, Li Bin-Hou. The evolution law of KTP SHG conversion efficiency in special repetition rate. Acta Physica Sinica, 2010, 59(8): 5533-5540. doi: 10.7498/aps.59.5533
    [14] Liu Hua-Gang, Hu Ming-Lie, Liu Bo-Wen, Song You-Jian, Chai Lu, Wang Qing-Yue. Study on the high-power, high-repetition-rate and multi-wavelength femtosecond laser system. Acta Physica Sinica, 2010, 59(6): 3979-3985. doi: 10.7498/aps.59.3979
    [15] Yan Xiong-Wei, Yu Hai-Wu, Cao Ding-Xiang, Li Ming-Zhong, Jiang Dong-Bin, Jiang Xin-Ying, Duan Wen-Tao, Xu Mei-Jian. ASE effect in pulsed energy-storage rep-rated Yb:YAG disk laser amplifier. Acta Physica Sinica, 2009, 58(6): 4230-4238. doi: 10.7498/aps.58.4230
    [16] Huang Lin, Dai Zhi-Yong, Liu Yong-Zhi. Influences of pumping manners on characteristics of all-fiber acousto-optic Q-switched lasers under different pulse repetition rates. Acta Physica Sinica, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [17] Xia Ting-Ting, Zhong Jian-Wei, Mao Bang-Ning, Chen Gang, Yao Zhi-Xin, Pan Bai-Liang. Influence of cataphoresis on metal vapor distribution in high repetition rate pulsed discharge metal vapor lasers. Acta Physica Sinica, 2006, 55(1): 202-205. doi: 10.7498/aps.55.202
    [18] Pan Bai-Liang, Yao Zhi-Xin, Chen Gang, Fang Ben-Min. . Acta Physica Sinica, 2002, 51(2): 259-261. doi: 10.7498/aps.51.259
    [19] MA HAI-MING, LI FU-MING. SELF-TRANSMISSION OF PICOSECOND LIGHT PULSES IN GaAs. Acta Physica Sinica, 1989, 38(9): 1530-1533. doi: 10.7498/aps.38.1530
    [20] JIANG XING-LIU, CHEN KE-FAN, PIAO YU-BO. A NEW TYPE OF PULSED ELECTRON AND ION SOURCE WITH A DURATION OF NANOSECONDS. Acta Physica Sinica, 1983, 32(10): 1344-1348. doi: 10.7498/aps.32.1344
Metrics
  • Abstract views:  5847
  • PDF Downloads:  175
  • Cited By: 0
Publishing process
  • Received Date:  30 January 2015
  • Accepted Date:  14 May 2015
  • Published Online:  05 October 2015

/

返回文章
返回