Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Volterra prediction model for speech signal series

Zhang Yu-Mei Hu Xiao-Jun Wu Xiao-Jun Bai Shu-Lin Lu Gang

Citation:

Volterra prediction model for speech signal series

Zhang Yu-Mei, Hu Xiao-Jun, Wu Xiao-Jun, Bai Shu-Lin, Lu Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The given English phonemes, words and sentences are sampled and preprocessed. For these real measured speech signal series, time delay and embedding dimension are determined by using mutual information method and Cao's method, respectively, so as to perform phase space reconstruction of the speech signal series. By using small data set method, the largest Lyapunov exponent of the speech signal series is calculated and the fact that its value is greater than zero presents chaotic characteristics of the speech signal series. This, in fact, performs the chaotic characteristic identification of the speech signal series. By introducing second-order Volterra series, in this paper we put forward a type of nonlinear prediction model with an explicit structure. To overcome some intrinsic shortcomings caused by improper parameter selection when using the least mean square (LMS) algorithm to update Volterra model efficiency, by using a variable convergence factor technology based on a posteriori error assumption on the basis of LMS algorithm, a novel Davidon-Fletcher-Powell-based second of Volterra filter (DFPSOVF) is constructed and is performed to predict speech signal series of the given English phonemes, words and sentences with chaotic characteristics. Simulation results under MATLAB 7.0 environment show that the proposed nonlinear model DFPSOVF can guarantee its stability and convergence and there are no divergence problems in using LMS algorithm; for single-frame and multi-frame of the measured speech signals, when root mean square error (RMSE) is used as an evaluation criterion the prediction accuracy of the proposed nonlinear prediction model DFPSOVF in this paper is better than that of the linear prediction (LP) that is traditionally employed. The primary results of single-frame and multi-frame predictions are given. So, the proposed DFPSOVF model can substitute linear prediction model on certain conditions. Meanwhile, it can better reflect trends and regularity of the speech signal series and fully meet requirements for speech signal prediction. The memory length of the proposed prediction model may be selected by the embedding dimension of the speech signal series. The proposed model can present a nonlinear analysis and more valuable model structure for speech signal series, and opens up a new way to speech signal reconstruction and compression coding so as to improve complexity and process effect of speech signal processing method.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11502133, 11172342, 11372167, 61202153), the Key Science and Technology Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), the Science and Technology Plan of Xi'an City, China (Grant No. CXY1437(1)), and the Science and Technology Plan of Yulin City, China (Grant Nos. 2014cxy-09, sf13-43, 2012 cxy3-6).
    [1]

    Maragos P 2013 Appl. Soft Comput. 13 3314

    [2]

    Wu X J, Yang Z Z 2013 Appl. Soft Comput. 13 3314

    [3]

    Max A L 2011 Advances in Nonlinear Speech Processing 7015 9

    [4]

    Cheng X F, Zhang Z 2013 Acta Phys. Sin. 62 168701 (in Chinese) [成谢锋, 张正 2013 物理学报 62 168701]

    [5]

    Chen D Y, Liu Y, Ma X Y 2012 Acta Phys. Sin. 61 100501 (in Chinese) [陈帝伊, 柳烨, 马孝义 2012 物理学报 61 100501]

    [6]

    Iasonas K, Petros M 2005 IEEE Trans. Speech Audio Process. 13 1098

    [7]

    Sun J F, Zheng N H, Wang X L 2007 Singal Process. 87 2431

    [8]

    Maciej O 2005 Chin. Phys. 14 2181

    [9]

    Xiao X C, Li H C, Zhang J S 2005 Chin. Phys. 14 2181

    [10]

    Zhang J S, Li H C, Xiao X C 2005 Chin. Phys. 14 49

    [11]

    Thyssen J, Nielsen H, Hansen S D 1994 ICASSP 185

    [12]

    Sigrist Z, Grivel E, Alcoverro B 2012 Signal Process. 92 1010

    [13]

    Mathews V J 1991 IEEE Signal Process. Mag. 8 10

    [14]

    Wei R X, Han C Z, Zhang Z L 2005 Acta Electron. Sin. 33 656 (in Chinese) [魏瑞轩, 韩崇昭, 张宗麟 2005电子学报 33 656]

    [15]

    Guerin A, Faucon G, Le Bouquin-Jeannes R 2003 IEEE Trans. Speech Audio Proc. 11 672

    [16]

    Zhang Y M, Wu X J, Bai S L 2013 Acta Phys. Sin. 62 190509 (in Chinese) [张玉梅, 吴晓军, 白树林 2013 物理学报 62 190509]

    [17]

    Henry D, Abarbanel N M, Rabinovich M I, Evren T 2001 Phys. Lett. A 281 368

    [18]

    Cao L Y 1997 Physica D 110 43

    [19]

    Rosenstein M T, Collins J J, de Iuca C J 1993 Physica D 65 117

    [20]

    de Campos M L R, Antoniou A 1997 IEEE Trans. Circ. Syst. 44 924

  • [1]

    Maragos P 2013 Appl. Soft Comput. 13 3314

    [2]

    Wu X J, Yang Z Z 2013 Appl. Soft Comput. 13 3314

    [3]

    Max A L 2011 Advances in Nonlinear Speech Processing 7015 9

    [4]

    Cheng X F, Zhang Z 2013 Acta Phys. Sin. 62 168701 (in Chinese) [成谢锋, 张正 2013 物理学报 62 168701]

    [5]

    Chen D Y, Liu Y, Ma X Y 2012 Acta Phys. Sin. 61 100501 (in Chinese) [陈帝伊, 柳烨, 马孝义 2012 物理学报 61 100501]

    [6]

    Iasonas K, Petros M 2005 IEEE Trans. Speech Audio Process. 13 1098

    [7]

    Sun J F, Zheng N H, Wang X L 2007 Singal Process. 87 2431

    [8]

    Maciej O 2005 Chin. Phys. 14 2181

    [9]

    Xiao X C, Li H C, Zhang J S 2005 Chin. Phys. 14 2181

    [10]

    Zhang J S, Li H C, Xiao X C 2005 Chin. Phys. 14 49

    [11]

    Thyssen J, Nielsen H, Hansen S D 1994 ICASSP 185

    [12]

    Sigrist Z, Grivel E, Alcoverro B 2012 Signal Process. 92 1010

    [13]

    Mathews V J 1991 IEEE Signal Process. Mag. 8 10

    [14]

    Wei R X, Han C Z, Zhang Z L 2005 Acta Electron. Sin. 33 656 (in Chinese) [魏瑞轩, 韩崇昭, 张宗麟 2005电子学报 33 656]

    [15]

    Guerin A, Faucon G, Le Bouquin-Jeannes R 2003 IEEE Trans. Speech Audio Proc. 11 672

    [16]

    Zhang Y M, Wu X J, Bai S L 2013 Acta Phys. Sin. 62 190509 (in Chinese) [张玉梅, 吴晓军, 白树林 2013 物理学报 62 190509]

    [17]

    Henry D, Abarbanel N M, Rabinovich M I, Evren T 2001 Phys. Lett. A 281 368

    [18]

    Cao L Y 1997 Physica D 110 43

    [19]

    Rosenstein M T, Collins J J, de Iuca C J 1993 Physica D 65 117

    [20]

    de Campos M L R, Antoniou A 1997 IEEE Trans. Circ. Syst. 44 924

  • [1] Wang Meng-Jiao, Zhou Ze-Quan, Li Zhi-Jun, Zeng Yi-Cheng. An adaptive denoising algorithm for chaotic signals based on collaborative filtering. Acta Physica Sinica, 2018, 67(6): 060501. doi: 10.7498/aps.67.20172470
    [2] Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Gao Xian-Wen. Chaotic characteristics analysis and prediction for short-term wind speed time series. Acta Physica Sinica, 2015, 64(3): 030506. doi: 10.7498/aps.64.030506
    [3] Wang Meng-Jiao, Wu Zhong-Tang, Feng Jiu-Chao. A parameter optimization nonlinear adaptive denoising algorithm for chaotic signals. Acta Physica Sinica, 2015, 64(4): 040503. doi: 10.7498/aps.64.040503
    [4] Zhang Yu-Mei, Wu Xiao-Jun, Bai Shu-Lin. Chaotic characteristic analysis for traffic flow series and DFPSOVF prediction model. Acta Physica Sinica, 2013, 62(19): 190509. doi: 10.7498/aps.62.190509
    [5] Han Min, Xu Mei-Ling. A hybrid prediction model of multivariate chaotic time series based on error correction. Acta Physica Sinica, 2013, 62(12): 120510. doi: 10.7498/aps.62.120510
    [6] Gao Shi-Long, Zhong Su-Chuan, Wei Kun, Ma Hong. Weak signal detection based on chaos and stochastic resonance. Acta Physica Sinica, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [7] Zhang Xue-Qing, Liang Jun. Chaotic characteristics analysis and prediction model study on wind power time series. Acta Physica Sinica, 2012, 61(19): 190507. doi: 10.7498/aps.61.190507
    [8] Wang Guo-Guang, Wang Dan, He Li-Qiao. Projection filtering of signals in chaos. Acta Physica Sinica, 2010, 59(5): 3049-3056. doi: 10.7498/aps.59.3049
    [9] Du Jie, Cao Yi-Jia, Liu Zhi-Jian, Xu Li-Zhong, Jiang Quan-Yuan, Guo Chuang-Xin, Lu Jin-Gui. Local higher-order Volterra filter multi-step prediction model of chaotic time series. Acta Physica Sinica, 2009, 58(9): 5997-6005. doi: 10.7498/aps.58.5997
    [10] Chen Zheng, Zeng Yi-Cheng, Fu Zhi-Jian. A novel parameter estimation method of signal in chaotic background. Acta Physica Sinica, 2008, 57(1): 46-50. doi: 10.7498/aps.57.46
    [11] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [12] Jin Jian-Xiu, Qiu Shui-Sheng, Xie Li-Ying, Feng Ming-Ku. A method of detecting the unpredictability of chaotic signals based on periodic orbit statistics. Acta Physica Sinica, 2008, 57(5): 2743-2749. doi: 10.7498/aps.57.2743
    [13] Li Xue-Xia, Feng Jiu-Chao. A blind separation method for chaotic signals. Acta Physica Sinica, 2007, 56(2): 701-706. doi: 10.7498/aps.56.701
    [14] He Hong-Jie, Zhang Jia-Shu. A chaos-based self-embedding secure watermarking algorithm. Acta Physica Sinica, 2007, 56(6): 3092-3100. doi: 10.7498/aps.56.3092
    [15] Yan Hua, Wei Ping, Xiao Xian-Ci. An adaptive approach based on Bernstein polynomial to predict chaotic time series. Acta Physica Sinica, 2007, 56(9): 5111-5118. doi: 10.7498/aps.56.5111
    [16] Tang Guo-Ning, Luo Xiao-Shu. The prediction feedback control for chaotic systems. Acta Physica Sinica, 2004, 53(1): 15-20. doi: 10.7498/aps.53.15
    [17] Zhang Jia-Shu, Li Heng-Chao, Xiao Xian-Ci. A DCT domain quadratic predictor for real-time prediction of continuous chaotic signals. Acta Physica Sinica, 2004, 53(3): 710-716. doi: 10.7498/aps.53.710
    [18] Wang Fu-Peng, Wang Zan-Ji, Guo Jing-Bo. . Acta Physica Sinica, 2002, 51(3): 474-481. doi: 10.7498/aps.51.474
    [19] Wei Biao-Lin, Luo Xiao-Shu, Wang Bing-Hong, Quan Hong-Jun, Guo Wei, Fu Jin-Jie. . Acta Physica Sinica, 2002, 51(10): 2205-2210. doi: 10.7498/aps.51.2205
    [20] ZHANG JIA-SHU, XIAO XIAN-CI. A REDUCED PARAMETER SECOND-ORDER VOLTERRA FILTER WITH APPLICATION TO NONLINEAR ADAPTIVE PREDICTION OF CHAOTIC TIME SERIES. Acta Physica Sinica, 2001, 50(7): 1248-1254. doi: 10.7498/aps.50.1248
Metrics
  • Abstract views:  6399
  • PDF Downloads:  231
  • Cited By: 0
Publishing process
  • Received Date:  12 November 2014
  • Accepted Date:  02 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回