Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Movement of fat particles in carotid artery and its influence on hemodynamics

Xu Song-Lin Zhu Dong

Citation:

Movement of fat particles in carotid artery and its influence on hemodynamics

Xu Song-Lin, Zhu Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It has been widely observed that atherosclerotic diseases occur in regions with complex hemodynamics, such as artery bifurcations and regions of high curvature. These regions usually have low or oscillatory wall shear stress, which is a main factor that results in thrombus formation. In addition, after the thrombosis, the stenosis will in turn affect the hemodynamics. In the blood circulation, the abnormal substances that do not dissolve in the blood can block the vascular cavity, which is called embolism. These substances such as fat particles are called embolus. Embolism results in high velocity and wall shear stress (WSS), which is harmful to the vessel wall. Embolism leads to stroke easily, resulting in the death of the patient. Here, the authors focus on the formation process of fat embolism and its influence on hemodynamics. In order to investigate the influence of various factors on the movement of a fat particle, we carry out the single factor simulation. Fat particles do not dissolve in the blood and easily adhere to the vessel wall. We use a virtual fluid that represents the fat particles. In the present work, a two-dimensional (2D) carotid bifurcation is established, and the simulation is carried out by the computational fluid dynamics software. The movement of the fat particles relies on the thrust and surface friction of the blood, and the values of thrust and surface friction are governed by the blood velocity, viscosity and the diameter of the fat particle, which has little relationship with the density, especially for a blood vessel that is not too long. The fat particles can smoothly pass through the carotid sinus when the vessel is 0 or 25% stenosed, which indicates that the embolism does not occur and the fat particle does not adhere to the vessel wall. Small deformation occurrs when the vessel is 25% stenosed for 0.6 s. When the degree of stenosis increases to 50%, the fat particles partially blocks the vascular cavity. We give an experiment about the influences of the stenosis on the movement of two fat particles and thrombus. When the carotid sinus is 0 or 25% stenosed, the two fat particles adhere to the vessel wall at the end of internal carotid artery (ICA), resulting in fat embolism. One fat article is on the upper wall of ICA and the other is on the lower wall. At the end of ICA, the vascular diameter becomes smaller and the two fat particles cannot pass through it. When the carotid sinus is 50% stenosed, the two fat particles merge into a larger one and partially block the narrow vascular cavity, impeding blood circulation. The findings in this paper may help hematological experts to check the spread of atherosclerotic disease. The main conclusions drawn from the present study are a) the vascular stenosis has an important influence on the movement of fat particles and the formation of embolism as well; b) the fat particles may adhere to the vessel wall, and due to the flow of blood, the fat particles spread slightly on the wall; c) the region behind the stenosis might be the next site of thrombosis; d) with the movement of fat particles, the maximum negative WSS increases slightly, and its coordinate position moves to the right; e) when embolism occurs, the velocity and WSS distribution become very complex, which is harmful to the vessel.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21176170).
    [1]

    Glagov S, Zarins C, Giddens D P, Ku D N 1988 Arch. Pathol. Lab. Med. 112 1018

    [2]

    Yi X Y, Chen C M, Chi L F, Huang Y, Zhang S K 2006 Chin. J. Neurol. 39 388 (in Chinese) [易兴阳, 陈存木, 池丽芬, 黄毅, 张顺开 2006 中华神经科杂志 39 388]

    [3]

    Perktold K, Resch M, Florian H 1991 J. Biomech. Eng. 113 464

    [4]

    Gijsen F G H, van de Vosse F N, Janssen J D 1999 J. Biomech. Eng. 32 601

    [5]

    Zhao S Z, Xu X Y, Hughes A D, Thom S A, Stanton A V, Ariff B, Long Q 2000 J. Biomech. 33 975

    [6]

    Younis H F, Kaazempur-Mofrad M R, Chan R C, Isasi A G, Hinton D P, Chau A H, Kim L A, Kamm R D 2004 Biomech. Model. Mechanobiol. 3 17

    [7]

    Kang X Y, Ji Y P, Liu D H, Jin Y J 2008 Chin. Phys. B 17 1041

    [8]

    Yi H H, Yang X F, Wang C F, Li H B 2009 Chin. Phys. B 18 2878

    [9]

    Seo T 2013 Korea-Aust. Rheol. J. 25 153

    [10]

    Fan Y, Jiang W T, Zou Y W, Li J C, Deng X Y 2009 Acta Mech.Sin. 25 249

    [11]

    Rindt C C M, van Steenhoven A A, Janssen J D, Reneman R S, Segal A A 1996 J. Biomech. 23 445

    [12]

    Papathanasopoulou P, Zhao S, Kohler U, Robertson M B, Long Q, Hoskins P, Xu X Y, Marshall L 2003 J. Magn. Reson. Imaging 17 153

    [13]

    Younis H F, Kaazampur-mofrad M R, Chan R C, Isasi A G, Hinton D P, Chau A H, Kim L A, Kamm R D 2004 Biomech. Model. Mechanobiol. 3 17

    [14]

    Steinman D A, Thomas J B, Ladak H M, Milner J S, Rutt B K, Spence J D 2002 Magn. Reson. Med. 47 149

    [15]

    Smith R F, Rutt B K, Fox A J, Rankin R N 1996 Acad. Radiol. 3 898

    [16]

    Gijsen F J H, Van de Vosse F N, Janssen J D 1991 J. Biomech. 32 601

    [17]

    Shibeshi S S, Collins W E 2005 Appl. Rheol. 15 398

    [18]

    Nguyen K T, Clark C D, Chancellor T J, Papavassiliou D V 2008 J. Biomech. 41 11

    [19]

    Marshall I, Papathanasopoulou P, Wartolowska K 2004 Physiol. Meas. 25 691

    [20]

    Liu Z M, Ma R Y, Zhang T, Ye H L 2003 J. Beijing Univ. Technol. 36 1153 (in Chinese) [刘赵淼, 马瑞艳, 张谭, 叶红玲 2003 北京工业大学学报 36 1153]

    [21]

    Toloui M, Firoozabadi B, Saidi M S 2012 Sci. Iran. 19 119

  • [1]

    Glagov S, Zarins C, Giddens D P, Ku D N 1988 Arch. Pathol. Lab. Med. 112 1018

    [2]

    Yi X Y, Chen C M, Chi L F, Huang Y, Zhang S K 2006 Chin. J. Neurol. 39 388 (in Chinese) [易兴阳, 陈存木, 池丽芬, 黄毅, 张顺开 2006 中华神经科杂志 39 388]

    [3]

    Perktold K, Resch M, Florian H 1991 J. Biomech. Eng. 113 464

    [4]

    Gijsen F G H, van de Vosse F N, Janssen J D 1999 J. Biomech. Eng. 32 601

    [5]

    Zhao S Z, Xu X Y, Hughes A D, Thom S A, Stanton A V, Ariff B, Long Q 2000 J. Biomech. 33 975

    [6]

    Younis H F, Kaazempur-Mofrad M R, Chan R C, Isasi A G, Hinton D P, Chau A H, Kim L A, Kamm R D 2004 Biomech. Model. Mechanobiol. 3 17

    [7]

    Kang X Y, Ji Y P, Liu D H, Jin Y J 2008 Chin. Phys. B 17 1041

    [8]

    Yi H H, Yang X F, Wang C F, Li H B 2009 Chin. Phys. B 18 2878

    [9]

    Seo T 2013 Korea-Aust. Rheol. J. 25 153

    [10]

    Fan Y, Jiang W T, Zou Y W, Li J C, Deng X Y 2009 Acta Mech.Sin. 25 249

    [11]

    Rindt C C M, van Steenhoven A A, Janssen J D, Reneman R S, Segal A A 1996 J. Biomech. 23 445

    [12]

    Papathanasopoulou P, Zhao S, Kohler U, Robertson M B, Long Q, Hoskins P, Xu X Y, Marshall L 2003 J. Magn. Reson. Imaging 17 153

    [13]

    Younis H F, Kaazampur-mofrad M R, Chan R C, Isasi A G, Hinton D P, Chau A H, Kim L A, Kamm R D 2004 Biomech. Model. Mechanobiol. 3 17

    [14]

    Steinman D A, Thomas J B, Ladak H M, Milner J S, Rutt B K, Spence J D 2002 Magn. Reson. Med. 47 149

    [15]

    Smith R F, Rutt B K, Fox A J, Rankin R N 1996 Acad. Radiol. 3 898

    [16]

    Gijsen F J H, Van de Vosse F N, Janssen J D 1991 J. Biomech. 32 601

    [17]

    Shibeshi S S, Collins W E 2005 Appl. Rheol. 15 398

    [18]

    Nguyen K T, Clark C D, Chancellor T J, Papavassiliou D V 2008 J. Biomech. 41 11

    [19]

    Marshall I, Papathanasopoulou P, Wartolowska K 2004 Physiol. Meas. 25 691

    [20]

    Liu Z M, Ma R Y, Zhang T, Ye H L 2003 J. Beijing Univ. Technol. 36 1153 (in Chinese) [刘赵淼, 马瑞艳, 张谭, 叶红玲 2003 北京工业大学学报 36 1153]

    [21]

    Toloui M, Firoozabadi B, Saidi M S 2012 Sci. Iran. 19 119

  • [1] Gao Fei, Hu Dao-Nan, Tong Heng-Qing, Wang Chuan-Mei. Chaotic analysis of fractional Willis delayed aneurysm system. Acta Physica Sinica, 2018, 67(15): 150501. doi: 10.7498/aps.67.20180262
    [2] Gao Fei, Li Teng, Tong Heng-Qing, Ou Zhuo-Ling. Chaotic dynamics of the fractional Willis aneurysm system and its control. Acta Physica Sinica, 2016, 65(23): 230502. doi: 10.7498/aps.65.230502
    [3] Zhao Zhan-Shan, Zhang Jing, Ding Gang, Zhang Da-Kun. Chaos synchronization of coronary artery system based on higher order sliding mode adaptive control. Acta Physica Sinica, 2015, 64(21): 210508. doi: 10.7498/aps.64.210508
    [4] Gu Yuan-Feng, Xiao Jian. Analysis of the Willis chaotic system and thecontrol of random phase. Acta Physica Sinica, 2014, 63(16): 160506. doi: 10.7498/aps.63.160506
    [5] Shi Juan, Wang Li-Long, Zhou Jin-Yang, Xue Ze, Li Hua-Bing, Wang Jian, Tan Hui-Li. Study on the blood embolism in the bifurcation pipe by the lattice Boltzmann method. Acta Physica Sinica, 2014, 63(1): 014702. doi: 10.7498/aps.63.014702
    [6] LI FANG-YU, TANG MENG-XI, ZHAO PENG-FEI. INTERACTION BETWEEN NARROW WAVE BEAM-TYPE HIGH FREQUENCY GRAVITATIONAL RADIATION AND ELECTROMAGNETIC FIELDS. Acta Physica Sinica, 1992, 41(12): 1919-1928. doi: 10.7498/aps.41.1919
    [7] LI FANG-YU, TANG MENG-XI. NARROW WAVE BEAM-TYPE GRAVITATIONAL RADIATION OF SPACE ARRAYS. Acta Physica Sinica, 1987, 36(12): 1570-1582. doi: 10.7498/aps.36.1570
Metrics
  • Abstract views:  5272
  • PDF Downloads:  137
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2015
  • Accepted Date:  16 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回