搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冠状动脉系统高阶滑模自适应混沌同步设计

赵占山 张静 丁刚 张大坤

引用本文:
Citation:

冠状动脉系统高阶滑模自适应混沌同步设计

赵占山, 张静, 丁刚, 张大坤

Chaos synchronization of coronary artery system based on higher order sliding mode adaptive control

Zhao Zhan-Shan, Zhang Jing, Ding Gang, Zhang Da-Kun
PDF
导出引用
  • 针对冠状动脉系统混沌同步问题, 系统模型受到有界但未知的不确定干扰条件下, 利用几何齐次性理论和积分滑模面设计高阶滑模自适应控制器, 使响应系统在有限时间内跟踪驱动系统, 该方法无需提前预知扰动边界. 采用Lyapunov理论对闭环系统进行分析并证明该控制器保证该系统能够在有限时间内镇定, 从仿真实验结果可以看出所设计的控制器在不确定干扰的情况下系统具有良好鲁棒性和未知参数的自适应性, 为能够有效治疗心肌梗死等冠状动脉疾病提供了一定的理论依据.
    Many biomedical engineering fields are studied by combining with nonlinear science which has major advances in theoretical curing related diseases. The coronary artery system is chosen as a muscular blood vessel model. With the change of vessel diameter, some chaotic behaviors will occur which may cause complex diseases such as myocardial infarction.#br#In order to avoid the undesired chaotic motion, this paper investigates the finite-time chaos synchronization problem for a coronary artery system by utilizting high-order sliding mode adaptive control method. First, the error chaos synchronization system is obtained using the master and slave systems. Second, the error chaos synchronization system can be transformed into an integrator chain system by coordinate transformation, which is equivalent to an error chaos synchronization system. Considering that the sliding mode control has main obstacle (the control high activity and chattering phenomenon), a high-order sliding mode adaptive controller is designed for a coronary artery system with unknown disturbances at geometric homogeneity and integral sliding mode surface. The proposed method shows that the drive and response systems are synchronized and the states of the response system track the states of the drive system in finite-time. This approach does not require any information about the bound of disturbances in advance. Theoretic analysis based on Lyapunov theory proves that the systems with the proposed controller could be stabilized in finite-time. The convergence time of the system states is estimated. In order to alleviate the chattering effect, we use tanh(·) function in place of sign(·) function to design an improved high-order sliding mode adaptive controller. Simulation results show that the proposed adaptive sliding mode controller can achieve better robustness and adaptation against disturbances, which offer the theoretic basis for curing myocardial infarction.
      通信作者: 张静, chufei726@163.com
    • 基金项目: 国家自然科学基金(批准号: 61503280, 61173032, 61272006)资助的课题.
      Corresponding author: Zhang Jing, chufei726@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61503280, 61173032, 61272006).
    [1]

    Guan J B 2010 Chin. Phys. Lett. 27 20502

    [2]

    Magrans R, Gomis P, Caminal P 2013 Med. Eng. Phys. 35 1070

    [3]

    Liu X, Ma B W, Liu H J 2013 Acta Phys. Sin. 62 020202 (in Chinese) [刘仙, 马百旺, 刘会军. 2013 物理学报 62 020202]

    [4]

    Gu Y F, Xiao J 2014 Acta Phys. Sin. 62 160506 [古元凤, 肖剑 2014 物理学报 62 160506]

    [5]

    Li W 2012 Int J. Syst Sci. 43 21

    [6]

    Lin C J, Yang S K, Yau H T 2012 Comput. Math. Appl. 64 988

    [7]

    Wang T, Gao H J, Qiu J 2015 IEEE Trans. Neur. Net. Lear.24 11671

    [8]

    Li H Y, Wu C W, Shi P, Gao Y B 2015 IEEE Trans. Cybern. (In press) DOI: 10.1109/TCYB 2014.2371814

    [9]

    Li H Y, Wu C W, Wu, L G, Lam H K 2015 IEEE Trans. Cybern. (In press) DOI 10.1109/TCYB 2015.2413134

    [10]

    Li H Y, Sun X J, Shi P, Lam H K 2015 Inform. Sciences 302 1

    [11]

    Xiu C B, Liu C, Guo F H, Cheng Y, Luo J 2015 Acta Phys. Sin. 64 060504 (in Chinese) [修春波, 刘畅, 郭富慧, 成怡, 罗菁 2015 物理学报 64 060504]

    [12]

    Gao H J, Chen T W, Lam J 2008 Automatica 44 39

    [13]

    Li H Y, Jing X J, Karimi H R 2014 IEEE Trans. Ind. Electron. 61 436

    [14]

    Li H Y, Yu J, Hilton C, Liu H 2013 IEEE Trans. Ind. Electron. 60 3328

    [15]

    Fridman L, Davila J., Levant A 2011 Nonlinear Anal. 5 189

    [16]

    Laghrouche S, Plestan F, Glumineau A 2007 Automatica43 531

    [17]

    Defoort M, Floquet T, Kokosy A 2009 Syst. Control Lett. 58 102

    [18]

    Gabriela A, Hernández G, Fridman L 2013 C ontrol Eng. Pract. 21 747

    [19]

    Gong C Y, Li Y M, Sun X H 2007 J. Biomath.22 503 (in Chinese) [贡崇颖, 李医民, 孙曦浩 2007 生物数学学报 22 503]

    [20]

    Levant A 2001 IEEE T. Automat. Contr. 49 1447

    [21]

    Bhat S, Bernstein D 2005 Math Control Signal17 101

    [22]

    Bhat S, Bernstein D 2000 SIAM J. Control Optim. 38 751

    [23]

    Yin S, Ding S X, Xie X C, Luo H 2014 IEEE Trans. Ind. Electron. 61 6418

    [24]

    Yin S, Li X W, Gao H J, Kaynak O 2015 IEEE Trans. Ind. Electron. 62 657

    [25]

    Yin S, Zhu X P, Kaynak O 2015 IEEE Trans. Ind. Electron. 62 1651

  • [1]

    Guan J B 2010 Chin. Phys. Lett. 27 20502

    [2]

    Magrans R, Gomis P, Caminal P 2013 Med. Eng. Phys. 35 1070

    [3]

    Liu X, Ma B W, Liu H J 2013 Acta Phys. Sin. 62 020202 (in Chinese) [刘仙, 马百旺, 刘会军. 2013 物理学报 62 020202]

    [4]

    Gu Y F, Xiao J 2014 Acta Phys. Sin. 62 160506 [古元凤, 肖剑 2014 物理学报 62 160506]

    [5]

    Li W 2012 Int J. Syst Sci. 43 21

    [6]

    Lin C J, Yang S K, Yau H T 2012 Comput. Math. Appl. 64 988

    [7]

    Wang T, Gao H J, Qiu J 2015 IEEE Trans. Neur. Net. Lear.24 11671

    [8]

    Li H Y, Wu C W, Shi P, Gao Y B 2015 IEEE Trans. Cybern. (In press) DOI: 10.1109/TCYB 2014.2371814

    [9]

    Li H Y, Wu C W, Wu, L G, Lam H K 2015 IEEE Trans. Cybern. (In press) DOI 10.1109/TCYB 2015.2413134

    [10]

    Li H Y, Sun X J, Shi P, Lam H K 2015 Inform. Sciences 302 1

    [11]

    Xiu C B, Liu C, Guo F H, Cheng Y, Luo J 2015 Acta Phys. Sin. 64 060504 (in Chinese) [修春波, 刘畅, 郭富慧, 成怡, 罗菁 2015 物理学报 64 060504]

    [12]

    Gao H J, Chen T W, Lam J 2008 Automatica 44 39

    [13]

    Li H Y, Jing X J, Karimi H R 2014 IEEE Trans. Ind. Electron. 61 436

    [14]

    Li H Y, Yu J, Hilton C, Liu H 2013 IEEE Trans. Ind. Electron. 60 3328

    [15]

    Fridman L, Davila J., Levant A 2011 Nonlinear Anal. 5 189

    [16]

    Laghrouche S, Plestan F, Glumineau A 2007 Automatica43 531

    [17]

    Defoort M, Floquet T, Kokosy A 2009 Syst. Control Lett. 58 102

    [18]

    Gabriela A, Hernández G, Fridman L 2013 C ontrol Eng. Pract. 21 747

    [19]

    Gong C Y, Li Y M, Sun X H 2007 J. Biomath.22 503 (in Chinese) [贡崇颖, 李医民, 孙曦浩 2007 生物数学学报 22 503]

    [20]

    Levant A 2001 IEEE T. Automat. Contr. 49 1447

    [21]

    Bhat S, Bernstein D 2005 Math Control Signal17 101

    [22]

    Bhat S, Bernstein D 2000 SIAM J. Control Optim. 38 751

    [23]

    Yin S, Ding S X, Xie X C, Luo H 2014 IEEE Trans. Ind. Electron. 61 6418

    [24]

    Yin S, Li X W, Gao H J, Kaynak O 2015 IEEE Trans. Ind. Electron. 62 657

    [25]

    Yin S, Zhu X P, Kaynak O 2015 IEEE Trans. Ind. Electron. 62 1651

  • [1] 潘光, 魏静. 一种分数阶混沌系统同步的自适应滑模控制器设计. 物理学报, 2015, 64(4): 040505. doi: 10.7498/aps.64.040505
    [2] 任涛, 朱志良, 于海, 王猛. 基于Min-Max方法的混沌系统采样同步控制研究. 物理学报, 2013, 62(17): 170510. doi: 10.7498/aps.62.170510
    [3] 黄丽莲, 齐雪. 基于自适应滑模控制的不同维分数阶混沌系统的同步. 物理学报, 2013, 62(8): 080507. doi: 10.7498/aps.62.080507
    [4] 袁雷, 沈建清, 肖飞, 陈明亮. 插入式永磁低速同步电机非奇异终端滑模观测器设计. 物理学报, 2013, 62(3): 030501. doi: 10.7498/aps.62.030501
    [5] 马铁东, 江伟波, 浮洁. 基于比较系统方法的分数阶混沌系统脉冲同步控制. 物理学报, 2012, 61(9): 090503. doi: 10.7498/aps.61.090503
    [6] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 物理学报, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [7] 牛永迪, 马文强, 王荣. 电光双稳态系统的混沌控制与同步. 物理学报, 2009, 58(5): 2934-2938. doi: 10.7498/aps.58.2934
    [8] 刘福才, 梁晓明, 宋佳秋. 广义Hénon混沌系统的自适应双模控制与同步. 物理学报, 2008, 57(3): 1458-1464. doi: 10.7498/aps.57.1458
    [9] 黄国勇, 姜长生, 王玉惠. 鲁棒terminal滑模控制实现一类不确定混沌系统同步. 物理学报, 2007, 56(11): 6224-6229. doi: 10.7498/aps.56.6224
    [10] 王发强, 刘崇新. Liu混沌系统的线性反馈同步控制及电路实验的研究. 物理学报, 2006, 55(10): 5055-5060. doi: 10.7498/aps.55.5055
    [11] 于灵慧, 房建成. 混沌神经网络逆控制的同步及其在保密通信系统中的应用. 物理学报, 2005, 54(9): 4012-4018. doi: 10.7498/aps.54.4012
    [12] 刘福才, 梁晓明. Hénon混沌系统的广义预测控制与同步快速算法. 物理学报, 2005, 54(10): 4584-4589. doi: 10.7498/aps.54.4584
    [13] 董恩增, 陈增强, 袁著祉. 混沌系统的自适应多变量广义预测控制与同步. 物理学报, 2005, 54(10): 4578-4583. doi: 10.7498/aps.54.4578
    [14] 陈志盛, 孙克辉, 张泰山. Liu混沌系统的非线性反馈同步控制. 物理学报, 2005, 54(6): 2580-2583. doi: 10.7498/aps.54.2580
    [15] 王兴元, 刘 明. 用滑模控制方法实现具有扇区非线性输入的主从混沌系统同步. 物理学报, 2005, 54(6): 2584-2589. doi: 10.7498/aps.54.2584
    [16] 谭 宁, 徐健学, 康艳梅, 陈永红. 耦合映射混沌同步系统在加性噪声中的筛形域性态. 物理学报, 2003, 52(12): 2989-2994. doi: 10.7498/aps.52.2989
    [17] 刘福才, 王娟, 彭海朋, 李丽香. Hénon混沌系统的预测控制与同步. 物理学报, 2002, 51(9): 1954-1959. doi: 10.7498/aps.51.1954
    [18] 刘福才, 王娟, 石淼, 高秀伟. 混沌系统的非线性连续预测变结构控制与同步. 物理学报, 2002, 51(12): 2707-2712. doi: 10.7498/aps.51.2707
    [19] 李丽香, 彭海朋, 卢辉斌, 关新平. Hénon混沌系统的追踪控制与同步. 物理学报, 2001, 50(4): 629-632. doi: 10.7498/aps.50.629
    [20] 戴栋, 马西奎. 基于间歇性参数自适应控制的混沌同步. 物理学报, 2001, 50(7): 1237-1240. doi: 10.7498/aps.50.1237
计量
  • 文章访问数:  4125
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-04
  • 修回日期:  2015-06-24
  • 刊出日期:  2015-11-05

冠状动脉系统高阶滑模自适应混沌同步设计

  • 1. 天津工业大学计算机科学与软件学院, 天津 300387;
  • 2. 天津工业大学纺织学部, 天津 300387;
  • 3. 天津职业大学设备处, 天津 300410;
  • 4. 天津广播电视大学教学资源管理与建设处, 天津 300191
  • 通信作者: 张静, chufei726@163.com
    基金项目: 国家自然科学基金(批准号: 61503280, 61173032, 61272006)资助的课题.

摘要: 针对冠状动脉系统混沌同步问题, 系统模型受到有界但未知的不确定干扰条件下, 利用几何齐次性理论和积分滑模面设计高阶滑模自适应控制器, 使响应系统在有限时间内跟踪驱动系统, 该方法无需提前预知扰动边界. 采用Lyapunov理论对闭环系统进行分析并证明该控制器保证该系统能够在有限时间内镇定, 从仿真实验结果可以看出所设计的控制器在不确定干扰的情况下系统具有良好鲁棒性和未知参数的自适应性, 为能够有效治疗心肌梗死等冠状动脉疾病提供了一定的理论依据.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回