搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子迁移忆阻混沌电路及其在语音保密通信中的应用

闵国旗 王丽丹 段书凯

引用本文:
Citation:

离子迁移忆阻混沌电路及其在语音保密通信中的应用

闵国旗, 王丽丹, 段书凯

Chaotic circuit of ion migration memristor and its application in the voice secure communication

Min Guo-Qi, Wang Li-Dan, Duan Shu-Kai
PDF
导出引用
  • 忆阻器是一种具有记忆功能和纳米级尺寸的非线性元件, 作为混沌系统的非线性部分, 能够使系统的物理尺寸大大减小, 同时可以得到各种丰富的非线性曲线, 提高混沌系统的复杂度和信号的随机性. 因此, 本文采用离子迁移忆阻器的磁控模型设计了一个新的混沌系统. 通过理论推导、数值仿真、Lyapunov指数谱、分岔图和Poincaré截面图研究了系统的基本动力学特性, 并分析了改变不同参数时系统动力学行为的变化. 同时, 建立了模拟该系统的SPICE电路, SPICE仿真结果与数值分析相符, 从而验证该混沌系统的混沌产生能力. 最后, 利用线性反馈同步控制方法实现了新构造的离子迁移忆阻混沌系统的同步, 并且采用该同步方法有效实现了语音信号的保密通信. 数值仿真证实了新混沌系统的存在性以及同步控制应用的可行性.
    A memristor is a nonlinear element of nanoscale size with memory function and when it works as the nonlinear part in a chaotic system, the physical size of the system will be greatly reduced, rich nonlinear curve will be produced, and at the same time, the complexity of the chaotic systems and the randomness of signals will be enhanced. So in this paper, a new chaotic system is designed based on an ion migration memristor. The complex dynamic characteristics of the memristive system are investigated by means of theoretical derivation, numerical simulation, Lyapunov exponent spectrum, power spectrum, and Poincaré map. In addition, the change of system dynamic behaviors with the different parameters are analyzed. Then, a SPICE-based analog circuit is presented. The SPICE simulation results are in conformity with the numerical analysis, and thus verify that the chaotic systems can produce chaos. The linear feedback control structure is simple, economic and easy to realize in engineering practice, so the linear feedback control method has a high application value. At present, most studies focus on memristors' applications in memory and analog neural networks, but little research work is for voice security transmission. Therefore, by using the method of linear feedback control of chaotic synchronization, this paper proves the effectiveness of this method by numerical simulation experiments. As a result, it can achieve secure communication of voice signals. Finally, we conclude that the linear synchronous control method based on memristive chaotic system when applied to the secure communications can achieve the purpose of covering a specific speech. In addition, this method is able to restore the specific speech signal without distortion, which is very meaningful for the promotion of applications of memristor.
      通信作者: 王丽丹, ldwang@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61372139, 61571372, 61101233, 60972155)、新世纪优秀人才支持计划(批准号: 教技函[2013]47号)、教育部“春晖计划” 科研项目(批准号: z2011148)、中央高校基本科研业务费专项资金(批准号: XDJK2016A001,XDJK2014A009)、留学人员科技活动项目择优资助经费(批准号: 国家级, 优秀类, 渝人社办〔2012〕186 号)、重庆市高等学校优秀人才支持计划(批准号: 渝教人〔2011〕65 号)、重庆市高等学校青年骨干教师资助计划(批准号: 渝教人〔2011〕65 号) 资助的课题.
      Corresponding author: Wang Li-Dan, ldwang@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372139, 61571372, 61101233, 60972155), the New Century Excellent Talents in University(Grant No. [2013]47), the “Spring Sunshine Plan” Research Project of Ministry of Education of China (Grant No. z2011148), the Fundamental Research Funds for the Central Universities (Grant Nos. XDJK2016A001, XDJK2014A009), the Excellent Talents in Scientific and Technological Activities for Overseas Scholars, Ministry of Personnel in China (Grant No. 2012-186), the University Excellent Talents Supporting Foundations in of Chongqing (Grant No. 2011-65), and the University Key Teacher Supporting Foundations of Chongqing (Grant No. 2011-65).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Kavehei O, Iqbal A, Kim Y S, Eshraghian K, Al-Sarawi S F, Abbott D 2010 Proc. R. Soc. A 466 2175

    [4]

    Biolek Z, Biolek D, Biolková V 2009 Radio. Eng. 18 210

    [5]

    Pershin Y V, Di Ventra M 2008 Phys Rev B 78 3309

    [6]

    Jo S H, Kim K H, Lu W 2009 Nano let. 9 870

    [7]

    Hu X F, Chen G R, Duan S K, Feng G 2014 In Memristor Networks (Springer International Publishing) (pp351-364)

    [8]

    Muthuswamy B, Kokate P P 2009 IETE Tech Rev. 26 417

    [9]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int J Bifurcat Chaos 22 1250205

    [10]

    Zhong G Q, Man K F, Chen G R 2002 Int J Bifurcat Chaos 12 2907

    [11]

    Bao B C, Shi G D, Xu J P, Liu Z, Pan S H 2011 Sci China Technol Sc. 54 2180

    [12]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [13]

    Bao B C, Feng F, Dong W, Pan S H 2013 Chin. Phys. B 22 068401

    [14]

    Corinto F, Ascoli A, Gilli M 2012IEEE World Congress on Computational Intelligence, WCCI, Brisbane, Australia, June 2012 p10-15

    [15]

    Pecora L M, Carroll T L 1990 Phys rev let. 64 821

    [16]

    Wang F Q, Liu C X 2006 Phys Lett A 360 274

    [17]

    Park J H 2005 Chaos, Soliton & Fract. 25 579

    [18]

    Chen Z S, Sun K H, Zhang T S 2005 Acta Phys. Sin. 54 2580 (in Chinese) [陈志盛, 孙克辉, 张泰山 2005 物理学报 54 2580]

    [19]

    Hegazi A S, Agiza H N, El-Dessoky M M 2002 Int J Bifurcat Chaos 12 1579

    [20]

    Park J H 2006 Chaos, Soliton & Fract. 27 1369

    [21]

    Li Z G, Xu D L 2004 Chaos, Soliton & Fract. 22 477

    [22]

    Lu J G 2005 Chaos, Soliton & Fract. 25 221

    [23]

    Kocarev L, Halle K S, Eckert K, Chua L O 1992 Int J Bifurcat Chaos 2 709

    [24]

    Cuomo K M, Oppenheim A V, Strogatz S H 1993 IEEE T CIRCUITS-II 40 626

    [25]

    Pehlivan I, Uyaroglu Y, Yogun M 2010 Sci Res Essays. 5 2210

    [26]

    Vontobel P O, Robinett W, Kuekes P J, Stewart D R, Williams R S, Straznicky J 2009 Nanotechnology 20 21

    [27]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [28]

    Wang Z J, Chen Z Q, Yuan Z Z 2006 Acta Phys. Sin. 55 3956 (in Chinese) [王杰智, 陈增强, 袁著祉 2006 物理学报 55 3956]

    [29]

    Tang L R, Li J, Fan B, Zhai M Y 2009 Acta Phys. Sin. 58 785 (in Chinese) [唐良瑞, 李静, 樊冰, 翟明岳 2009 物理学报 58 785]

    [30]

    Liu W B, Chen G R 2003 Int J Bifurcat Chaos 13 261

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Kavehei O, Iqbal A, Kim Y S, Eshraghian K, Al-Sarawi S F, Abbott D 2010 Proc. R. Soc. A 466 2175

    [4]

    Biolek Z, Biolek D, Biolková V 2009 Radio. Eng. 18 210

    [5]

    Pershin Y V, Di Ventra M 2008 Phys Rev B 78 3309

    [6]

    Jo S H, Kim K H, Lu W 2009 Nano let. 9 870

    [7]

    Hu X F, Chen G R, Duan S K, Feng G 2014 In Memristor Networks (Springer International Publishing) (pp351-364)

    [8]

    Muthuswamy B, Kokate P P 2009 IETE Tech Rev. 26 417

    [9]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int J Bifurcat Chaos 22 1250205

    [10]

    Zhong G Q, Man K F, Chen G R 2002 Int J Bifurcat Chaos 12 2907

    [11]

    Bao B C, Shi G D, Xu J P, Liu Z, Pan S H 2011 Sci China Technol Sc. 54 2180

    [12]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [13]

    Bao B C, Feng F, Dong W, Pan S H 2013 Chin. Phys. B 22 068401

    [14]

    Corinto F, Ascoli A, Gilli M 2012IEEE World Congress on Computational Intelligence, WCCI, Brisbane, Australia, June 2012 p10-15

    [15]

    Pecora L M, Carroll T L 1990 Phys rev let. 64 821

    [16]

    Wang F Q, Liu C X 2006 Phys Lett A 360 274

    [17]

    Park J H 2005 Chaos, Soliton & Fract. 25 579

    [18]

    Chen Z S, Sun K H, Zhang T S 2005 Acta Phys. Sin. 54 2580 (in Chinese) [陈志盛, 孙克辉, 张泰山 2005 物理学报 54 2580]

    [19]

    Hegazi A S, Agiza H N, El-Dessoky M M 2002 Int J Bifurcat Chaos 12 1579

    [20]

    Park J H 2006 Chaos, Soliton & Fract. 27 1369

    [21]

    Li Z G, Xu D L 2004 Chaos, Soliton & Fract. 22 477

    [22]

    Lu J G 2005 Chaos, Soliton & Fract. 25 221

    [23]

    Kocarev L, Halle K S, Eckert K, Chua L O 1992 Int J Bifurcat Chaos 2 709

    [24]

    Cuomo K M, Oppenheim A V, Strogatz S H 1993 IEEE T CIRCUITS-II 40 626

    [25]

    Pehlivan I, Uyaroglu Y, Yogun M 2010 Sci Res Essays. 5 2210

    [26]

    Vontobel P O, Robinett W, Kuekes P J, Stewart D R, Williams R S, Straznicky J 2009 Nanotechnology 20 21

    [27]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [28]

    Wang Z J, Chen Z Q, Yuan Z Z 2006 Acta Phys. Sin. 55 3956 (in Chinese) [王杰智, 陈增强, 袁著祉 2006 物理学报 55 3956]

    [29]

    Tang L R, Li J, Fan B, Zhai M Y 2009 Acta Phys. Sin. 58 785 (in Chinese) [唐良瑞, 李静, 樊冰, 翟明岳 2009 物理学报 58 785]

    [30]

    Liu W B, Chen G R 2003 Int J Bifurcat Chaos 13 261

  • [1] 全旭, 邱达, 孙智鹏, 张贵重, 刘嵩. 一个具有共存吸引子的四阶混沌系统动力学分析及FPGA实现. 物理学报, 2023, 72(19): 190502. doi: 10.7498/aps.72.20230795
    [2] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统. 物理学报, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [3] 王春妮, 王亚, 马军. 基于亥姆霍兹定理计算动力学系统的哈密顿能量函数. 物理学报, 2016, 65(24): 240501. doi: 10.7498/aps.65.240501
    [4] 王震, 孙卫. T混沌系统的动力学分析与同步及其电路仿真. 物理学报, 2013, 62(2): 020511. doi: 10.7498/aps.62.020511
    [5] 和兴锁, 闫业毫, 邓峰岩. 具有大范围运动和非线性变形的空间柔性梁在非惯性坐标系下的动力学分析. 物理学报, 2012, 61(2): 024501. doi: 10.7498/aps.61.024501
    [6] 武花干, 包伯成, 刘中. 吸引子涡卷数量与分布的控制:系统设计及电路实现. 物理学报, 2011, 60(9): 090502. doi: 10.7498/aps.60.090502
    [7] 刘朝华, 章兢, 张英杰, 李小花, 吴建辉. 一类不确定离散混沌系统的自抗扰控制器与小脑神经网络并行优化控制. 物理学报, 2011, 60(3): 030701. doi: 10.7498/aps.60.030701
    [8] 李秀春, 谷建华, 王云岚, 赵天海. 一类带有未知参数的受扰混沌系统的观测器同步. 物理学报, 2011, 60(3): 030505. doi: 10.7498/aps.60.030505
    [9] 张雪锋, 范九伦. 一种新的分段非线性混沌映射及其性能分析. 物理学报, 2010, 59(4): 2298-2304. doi: 10.7498/aps.59.2298
    [10] 向 菲, 丘水生. 基于混沌系统互扰的流密码设计. 物理学报, 2008, 57(10): 6132-6138. doi: 10.7498/aps.57.6132
    [11] 陈向荣, 刘崇新, 李永勋. 基于非线性观测器的一类分数阶混沌系统完全状态投影同步. 物理学报, 2008, 57(3): 1453-1457. doi: 10.7498/aps.57.1453
    [12] 张琪昌, 田瑞兰, 王 炜. 一类机电耦合非线性动力系统的混沌动力学特征. 物理学报, 2008, 57(5): 2799-2804. doi: 10.7498/aps.57.2799
    [13] 周 平. 利用标量控制器实现一类混沌系统同步. 物理学报, 2007, 56(7): 3777-3781. doi: 10.7498/aps.56.3777
    [14] 陈 晶, 张天平. 一类不确定混沌系统的观测器同步. 物理学报, 2006, 55(8): 3928-3932. doi: 10.7498/aps.55.3928
    [15] 高铁杠, 陈增强, 袁著祉, 顾巧论. 基于观测器的混沌系统的同步研究. 物理学报, 2004, 53(5): 1305-1308. doi: 10.7498/aps.53.1305
    [16] 关新平, 何宴辉, 邬 晶. 基于弹性控制器的混沌同步. 物理学报, 2003, 52(11): 2718-2722. doi: 10.7498/aps.52.2718
    [17] 唐 晨, 张 皞, 闫海青, 张桂敏. 非线性系统的任意项精细积分外插多步法及其在混沌数值分析中的应用. 物理学报, 2003, 52(5): 1091-1095. doi: 10.7498/aps.52.1091
    [18] 关新平, 何宴辉, 范正平. 扰动情况下一类混沌系统的观测器同步. 物理学报, 2003, 52(2): 276-280. doi: 10.7498/aps.52.276
    [19] 周 平. 一类3维连续混沌系统观测器. 物理学报, 2003, 52(5): 1108-1111. doi: 10.7498/aps.52.1108
    [20] 杨晓松. 一类混沌系统观测器. 物理学报, 2000, 49(10): 1919-1921. doi: 10.7498/aps.49.1919
计量
  • 文章访问数:  6408
  • PDF下载量:  5198
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-09
  • 修回日期:  2015-07-07
  • 刊出日期:  2015-11-05

/

返回文章
返回