搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Min-Max方法的混沌系统采样同步控制研究

任涛 朱志良 于海 王猛

引用本文:
Citation:

基于Min-Max方法的混沌系统采样同步控制研究

任涛, 朱志良, 于海, 王猛

Sampled-data synchronization control of chaotic systems based on min-max approach

Ren Tao, Zhu Zhi-Liang, Yu Hai, Wang Meng
PDF
导出引用
  • 针对含有扰动的混沌系统, 设计采样同步控制器, 利用输入时滞法将含有采样同步控制器的混杂系统转换为具有输入时滞的连续系统. 并考虑对系统影响最坏的干扰程度, 在该种情况下, 基于线性矩阵不等式(LMI)技术和min-max鲁棒控制方法, 给出了使误差系统稳定的充分条件, 确保混沌系统在所容许的扰动下均能实现完全同步. 仿真结果说明所设计的采样同步控制方案具有很强的鲁棒性, 适合应用于保密通信系统中.
    For the chaotic systems with disturbance, a sampled-data controller is designed to achieve chaotic synchronization. Firstly, to handle the discontinuity introduced by the sampling activities, the input-delay approach is introduced to transform the discontinuous chaotic systems into continuous ones. Secondly, the worst possible case of performance is considered according to min-max robust strategy. Then the sufficient conditions for global asymptotic synchronization of such chaotic systems are derived and expressed in terms of linear matrix inequality (LMI). The proposed algorithm can achieve synchronization of the sampled-data chaotic systems for all admissible disturbances at the pre-computed set of disturbance realizations. The effectiveness is finally illustrated via numerical simulations of chaotic Chuas circuit, and the simulation results show that the proposed algorithm is suitable for secure communication.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61104074)、中国博士后科学基金(批准号: 20100471462, 2013T60294);中央高校基本科研业务费专项资金(批准号: N100317002, N100604007, N110417004, N110417005, N110617001)和辽宁省博士启动基金(批准号: 20101032)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61104074), the China Postdoctoral Science Foundation (Grant Nos. 20100471462, 2013T60294), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. N100317002, N100604007, N110417004, N110417005, N110617001), and the Scientific Research Foundation for Doctor of Liaoning Province, China (Grant No. 20101032).
    [1]

    Aziz-Alaoui M A 2005 Proceeding of the IEEE Conference on Electronics, Circuits and Systems Gammarth, Tunisia, December 11-14, 2005 p1

    [2]

    Ji Y, Wen C Y, Li Z G 2008 Int. J. Comm. Sys. 21 1137

    [3]

    Li J F, Li N 2002 Chin. Phys. 11 1124

    [4]

    Hu M F, Xu Z Y 2007 Chin. Phys. 16 3231

    [5]

    Wang X Y, Wu X J, He Y J, Aniwar G 2008 Int. J. Modern Physics B 22 3709

    [6]

    Lee S M, Choi S J, Ji D H, Park J H, Won S C 2010 Nonlinear Dynam 59 277

    [7]

    Kwon O M, Park J H, Lee S M 2011 Nonlinear Dynam 63 239

    [8]

    Ma T D, Jiang W B, Fu J, Chai Y, Chen L P, Xue F Z 2012 Acta Phys. Sin. 61 160506 (in Chinese) [马铁东, 江伟波, 浮洁, 柴毅, 陈立平, 薛方正 2012 物理学报 61 160506]

    [9]

    Fu J, Yu M, Ma T D 2011 Chin. Phys. B 20 12508

    [10]

    Ma T D, Jiang W B, Fu J 2012 Acta Phys. Sin. 61 090503 (in Chinese) [马铁东, 江伟波, 浮洁 2012 物理学报 61 090503]

    [11]

    Lee S H, Kapila V, Porfiri M, Panda A 2010 Commun. Nonlinear Sci. Numer. Simulat 15 4100

    [12]

    Lee S H, Kapila V, Porfiri M 2008 Proceedings of the American Control Conference Seattle, WA, USA, Jun 11-13, 2008 p523

    [13]

    Barajas-Ramirez J G, Chen G, Shieh L S 2003 Int. J. Bifurc. Chaos 13 1197

    [14]

    Barajas-Ramirez J G, Chen G, Shieh L S 2004 Int. J. Bifurc. Chaos 14 2721

    [15]

    Barajas-Ramirez J G, Chen G, Shieh L S 2003 Proceedings of IEEE International Symposium on Intelligent Control Houston Texas, USA, October 5-8, 2003 p241

    [16]

    Lam H K, Seneviratne L D 2008 IEEE Trans. Circuits Syst. I 55 883

    [17]

    Zhang C K, He Y, Wu M 2009 IEEE Trans. Circuits Syst. II 56 320

    [18]

    Lu J G, Hill D J 2008 IEEE Trans. Circuits Syst. II 55 586

    [19]

    Zhu X L, Wang Y Y, Yang H Y 2010 Proceedings of the American Control Conference Baltimore, MD, USA, June 30-July 02, 2010 p1817

    [20]

    Chen W H, Wang Z P, Lu X M 2012 IEEE Trans. Circuits Syst. II 59 515

    [21]

    Feng Y F, Zhang Q L 2011 Chin. Phys. B 20 1

    [22]

    Theesar S J S, Banerjee S, Balasubramaniam P 2012 Nonlinear Dynam 70 1977

    [23]

    Ma D Z, Zhang H G, Wang Z S, Feng J 2010 Chin. Phys. B 19 0505061

    [24]

    Lee T H, Park J H, Lee S M, Kwon O M 2013 Int. J. Control 86 107

    [25]

    Fridman E, Shaked U, Suplin V 2007 Automatica 43 1072

    [26]

    Fridman E, Shaked U, Suplin V 2007 Syst. Control Lett. 54 271

  • [1]

    Aziz-Alaoui M A 2005 Proceeding of the IEEE Conference on Electronics, Circuits and Systems Gammarth, Tunisia, December 11-14, 2005 p1

    [2]

    Ji Y, Wen C Y, Li Z G 2008 Int. J. Comm. Sys. 21 1137

    [3]

    Li J F, Li N 2002 Chin. Phys. 11 1124

    [4]

    Hu M F, Xu Z Y 2007 Chin. Phys. 16 3231

    [5]

    Wang X Y, Wu X J, He Y J, Aniwar G 2008 Int. J. Modern Physics B 22 3709

    [6]

    Lee S M, Choi S J, Ji D H, Park J H, Won S C 2010 Nonlinear Dynam 59 277

    [7]

    Kwon O M, Park J H, Lee S M 2011 Nonlinear Dynam 63 239

    [8]

    Ma T D, Jiang W B, Fu J, Chai Y, Chen L P, Xue F Z 2012 Acta Phys. Sin. 61 160506 (in Chinese) [马铁东, 江伟波, 浮洁, 柴毅, 陈立平, 薛方正 2012 物理学报 61 160506]

    [9]

    Fu J, Yu M, Ma T D 2011 Chin. Phys. B 20 12508

    [10]

    Ma T D, Jiang W B, Fu J 2012 Acta Phys. Sin. 61 090503 (in Chinese) [马铁东, 江伟波, 浮洁 2012 物理学报 61 090503]

    [11]

    Lee S H, Kapila V, Porfiri M, Panda A 2010 Commun. Nonlinear Sci. Numer. Simulat 15 4100

    [12]

    Lee S H, Kapila V, Porfiri M 2008 Proceedings of the American Control Conference Seattle, WA, USA, Jun 11-13, 2008 p523

    [13]

    Barajas-Ramirez J G, Chen G, Shieh L S 2003 Int. J. Bifurc. Chaos 13 1197

    [14]

    Barajas-Ramirez J G, Chen G, Shieh L S 2004 Int. J. Bifurc. Chaos 14 2721

    [15]

    Barajas-Ramirez J G, Chen G, Shieh L S 2003 Proceedings of IEEE International Symposium on Intelligent Control Houston Texas, USA, October 5-8, 2003 p241

    [16]

    Lam H K, Seneviratne L D 2008 IEEE Trans. Circuits Syst. I 55 883

    [17]

    Zhang C K, He Y, Wu M 2009 IEEE Trans. Circuits Syst. II 56 320

    [18]

    Lu J G, Hill D J 2008 IEEE Trans. Circuits Syst. II 55 586

    [19]

    Zhu X L, Wang Y Y, Yang H Y 2010 Proceedings of the American Control Conference Baltimore, MD, USA, June 30-July 02, 2010 p1817

    [20]

    Chen W H, Wang Z P, Lu X M 2012 IEEE Trans. Circuits Syst. II 59 515

    [21]

    Feng Y F, Zhang Q L 2011 Chin. Phys. B 20 1

    [22]

    Theesar S J S, Banerjee S, Balasubramaniam P 2012 Nonlinear Dynam 70 1977

    [23]

    Ma D Z, Zhang H G, Wang Z S, Feng J 2010 Chin. Phys. B 19 0505061

    [24]

    Lee T H, Park J H, Lee S M, Kwon O M 2013 Int. J. Control 86 107

    [25]

    Fridman E, Shaked U, Suplin V 2007 Automatica 43 1072

    [26]

    Fridman E, Shaked U, Suplin V 2007 Syst. Control Lett. 54 271

  • [1] 贾雅琼, 蒋国平. 基于状态观测器的分数阶时滞混沌系统同步研究. 物理学报, 2017, 66(16): 160501. doi: 10.7498/aps.66.160501
    [2] 于海涛, 王江. 基于反演自适应动态滑模的FitzHugh-Nagumo神经元混沌同步控制. 物理学报, 2013, 62(17): 170511. doi: 10.7498/aps.62.170511
    [3] 黄丽莲, 齐雪. 基于自适应滑模控制的不同维分数阶混沌系统的同步. 物理学报, 2013, 62(8): 080507. doi: 10.7498/aps.62.080507
    [4] 吕翎, 李雨珊, 韦琳玲, 于淼, 张檬. 基于滑模控制法实现规则网络的混沌同步. 物理学报, 2012, 61(12): 120504. doi: 10.7498/aps.61.120504
    [5] 马铁东, 江伟波, 浮洁. 基于比较系统方法的分数阶混沌系统脉冲同步控制. 物理学报, 2012, 61(9): 090503. doi: 10.7498/aps.61.090503
    [6] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 物理学报, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [7] 杨东升, 张化光, 赵琰, 宋崇辉, 王迎春. 基于LMI的参数未知时变时滞混沌系统模糊自适应H∞同步. 物理学报, 2010, 59(3): 1562-1567. doi: 10.7498/aps.59.1562
    [8] 张化光, 马大中, 王占山, 冯健. 一类多时滞混沌系统的主从容错同步. 物理学报, 2010, 59(1): 147-156. doi: 10.7498/aps.59.147
    [9] 付士慧, 裴利军. 具有非线性控制的Chua电路的混沌同步. 物理学报, 2010, 59(9): 5985-5989. doi: 10.7498/aps.59.5985
    [10] 刘福才, 梁晓明, 宋佳秋. 广义Hénon混沌系统的自适应双模控制与同步. 物理学报, 2008, 57(3): 1458-1464. doi: 10.7498/aps.57.1458
    [11] 黄国勇, 姜长生, 王玉惠. 鲁棒terminal滑模控制实现一类不确定混沌系统同步. 物理学报, 2007, 56(11): 6224-6229. doi: 10.7498/aps.56.6224
    [12] 王发强, 刘崇新. Liu混沌系统的线性反馈同步控制及电路实验的研究. 物理学报, 2006, 55(10): 5055-5060. doi: 10.7498/aps.55.5055
    [13] 李 爽, 徐 伟, 李瑞红, 李玉鹏. 异结构系统混沌同步的新方法. 物理学报, 2006, 55(11): 5681-5687. doi: 10.7498/aps.55.5681
    [14] 朱志宇. 基于反馈精确线性化的混沌系统同步控制方法. 物理学报, 2006, 55(12): 6248-6252. doi: 10.7498/aps.55.6248
    [15] 于灵慧, 房建成. 混沌神经网络逆控制的同步及其在保密通信系统中的应用. 物理学报, 2005, 54(9): 4012-4018. doi: 10.7498/aps.54.4012
    [16] 董恩增, 陈增强, 袁著祉. 混沌系统的自适应多变量广义预测控制与同步. 物理学报, 2005, 54(10): 4578-4583. doi: 10.7498/aps.54.4578
    [17] 刘福才, 梁晓明. Hénon混沌系统的广义预测控制与同步快速算法. 物理学报, 2005, 54(10): 4584-4589. doi: 10.7498/aps.54.4584
    [18] 陈志盛, 孙克辉, 张泰山. Liu混沌系统的非线性反馈同步控制. 物理学报, 2005, 54(6): 2580-2583. doi: 10.7498/aps.54.2580
    [19] 王兴元, 刘 明. 用滑模控制方法实现具有扇区非线性输入的主从混沌系统同步. 物理学报, 2005, 54(6): 2584-2589. doi: 10.7498/aps.54.2584
    [20] 魏 荣, 王行愚. 连续时间混沌系统的自适应H∞ 同步方法. 物理学报, 2004, 53(10): 3298-3302. doi: 10.7498/aps.53.3298
计量
  • 文章访问数:  2863
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-27
  • 修回日期:  2013-05-22
  • 刊出日期:  2013-09-05

基于Min-Max方法的混沌系统采样同步控制研究

  • 1. 东北大学, 软件学院, 沈阳 110011;
  • 2. 东北大学, 信息科学与工程学院, 沈阳 110011
    基金项目: 国家自然科学基金青年科学基金(批准号: 61104074)、中国博士后科学基金(批准号: 20100471462, 2013T60294);中央高校基本科研业务费专项资金(批准号: N100317002, N100604007, N110417004, N110417005, N110617001)和辽宁省博士启动基金(批准号: 20101032)资助的课题.

摘要: 针对含有扰动的混沌系统, 设计采样同步控制器, 利用输入时滞法将含有采样同步控制器的混杂系统转换为具有输入时滞的连续系统. 并考虑对系统影响最坏的干扰程度, 在该种情况下, 基于线性矩阵不等式(LMI)技术和min-max鲁棒控制方法, 给出了使误差系统稳定的充分条件, 确保混沌系统在所容许的扰动下均能实现完全同步. 仿真结果说明所设计的采样同步控制方案具有很强的鲁棒性, 适合应用于保密通信系统中.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回