Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An evaluation criterion of infrared image complexity based on background optimal filter scale

Hou Wang Mei Feng-Hua Cheng Guo-Jun Deng Xi-Wen

Citation:

An evaluation criterion of infrared image complexity based on background optimal filter scale

Hou Wang, Mei Feng-Hua, Cheng Guo-Jun, Deng Xi-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • An evaluation of infrared image complexity is proposed based on the background optimal filtering to solve the problem that the traditional methods have given poor results in the background evaluation. Meanwhile, the optimal filtering scale for infrared image filtering can be given by this method, it will provide a guidance for optimal infrared image filtering. First, we generate the Gaussian simulated target and fuse it to the infrared image to obtain the real infrared image with the simulated target. Then, this image is filtered in different scales and the signal-to-noise ratio of the target after filtering is calculated. Finally, the maximal value of signal-to-noise ratio of the target is used as the background optimal filter scale, to evaluate the infrared image complexity. Besides, the infrared filtering scale is deduced by establishing the mathematic model, and then the mathematical expression of optimal filtering scale is obtained. A lot of experiments indicate that: 1) The mathematical expression of optimal filtering scale agrees with the experimental results. 2) The result of our method is better than that of the traditional methods based on information entropy. Because the optimal filtering scale is obtained by using our method, we can use this scale to filter the infrared image to effectively detect a small target. 3) When the scale of simulated target increases, the optimal filtering scale increases accordingly. So, when we calculate the infrared image complexity, the scale of simulated target must be the same. We can compare the infrared image complexity between different images. Moreover, the optimal filtering scale is independent of the intensity of simulated target. 4) The effect of Gaussian and Butterworth high-pass filter is better than that of the ideal high-pass filter in the proposed method. 5) The infrared image complexity can be analyzed by the proposed method effectively. Moreover, changes of different image contents can be analyzed by using the optimal filtering scale.
      Corresponding author: Hou Wang, Simon_Zero@126.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB733100).
    [1]

    Zhou B, Wang Y Z, Ying J J 2007 Infrared Technology 25 30 (in Chinese) [周冰, 王永仲, 应家驹 2007 红外技术 25 30]

    [2]

    Zhang H J, Liang Y, Cheng Y M, Pan Q, Zhang H C 2006 Infrared Technology 28 423 (in Chinese) [张惠娟, 梁彦, 程咏梅, 潘泉, 张洪才 2006 红外技术 28 423]

    [3]

    Chen Y 1989 IEEE Transactions on Aerospace and Electronic Systems 25 343

    [4]

    Reed I S, Gagliardi R M, Stotts L B 1990 IEEE Transactions on Aerospace and Electronic Systems 26 434

    [5]

    Gao C Q, Zhan T Q, Li Q, Jing X R 2008 Journal of Chongqing University of Posts and Telecommuni cations(Natural Science Edition) 37 907 (in Chinese) [高陈强, 张天骐, 李强, 景小荣 2010 重庆邮电大学学报 (自然科学版) 37 907]

    [6]

    Xi X L, Zhou X D, Zhang J 2012 System Engineering and Electronics 34 40 (in Chinese) [奚晓梁, 周晓东, 张健 2012 系统工程与电子技术 34 40]

    [7]

    Qin H L, Li J, Zhou H X, Lai R, Liu S Q 2011 J. Infrared Millim Waves 30 162 (in Chinese) [秦翰林, 李佳, 周慧鑫, 赖睿, 刘上乾 2011 红外与毫米波学报 30 162]

    [8]

    Wang J, Fu Y Q 2013 Chin. Phys. B 22 090206

    [9]

    Jiang B, Wang H Q, Li X, Guo G R 2006 Acta Phys. Sin. 55 3985 (in Chinese) [姜斌, 王宏强, 黎湘, 郭桂蓉 2006 物理学报 55 3985]

    [10]

    Zhang L, Yang Y, Wang J G, Zhao X, Fang Z L, Yuan X C 2013 Chin. Phys. B 22 054202

    [11]

    Hou W, Yu Q F, Lei Z H, Liu X C 2014 Acta Phys. Sin. 63 074211 (in Chinese) [侯旺, 于起峰, 雷志辉, 刘晓春 2014 物理学报 63 074211]

    [12]

    Zhang W Z, Cheng Z B, Xia B F, Ling B, Cao X Q 2014 Chin. Phys. B 23 044212

    [13]

    Wu Y R, Cheng Y M, Zhao Y Q, Gao S B 2011 J. Infrared Millim Waves 30 142 (in Chinese) [吴燕茹, 程咏梅, 赵永强, 高仕博 2011 红外与毫米波学报 30 142]

    [14]

    Cao Y, Liu R, Yang J 2008 Int J. Infrared Milli Waves 29 385

    [15]

    Cao Y, Yang J, Liu R M 2009 J. Infrared Millim Waves 28 235 (in Chinese) [曹原, 杨杰, 刘瑞明 2009 红外与毫米波学报 28 235]

    [16]

    Gu Y, Wang C, Liu B, Zhang Y 2010 IEEE Geoscience and Remote Sensing Letters 7 469

    [17]

    Zhao J J, Tang Z Y, Yang J, Liu E Q 2011 J. Infrared Millim Waves 30 156 (in Chinese) [赵佳佳, 唐峥远, 杨杰, 刘尔琦, 周越 2011 红外与毫米波学报 30 156]

    [18]

    Hua L L, Xu N, Yang G 2014 Chin. Phys. B 23 064201

    [19]

    Chen X, Zhang J S 2014 Chin. Phys. B 23 096401

    [20]

    Jiang D 2001 The Theory of Information and Coding (Hefei: Publishing House of the University of Science and Technology of China) p126 (in Chinese) [姜丹 2001 信息论与编码(合肥: 中国科技大学出版社) 第126页]

    [21]

    Yang L 2006 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [杨磊 2006 博士学位论文 (上海: 上海交通大学)]

    [22]

    Kim S, Lee J 2011 Pattern Anal. Applic. 14 57

    [23]

    Reed I S, Gagliardi R M, Shao H M 1983 IEEE Transactions on Aerospace and Electronic Systems 19 898

    [24]

    Reed I, Gagliardi R, Stotts L 1988 IEEE Transactions on Aerospace and Electronic Systems 24 327

    [25]

    Liang D C, Wei M G, Gu J Q, Ying Z P, Ou Y C M, Tian Z, He M X, Han J G, Zhang W L 2014 Acta Phys. Sin. 63 214102 (in Chinese) [梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力 2014 物理学报 63 214102]

    [26]

    Dai Y, Zhang J X 2012 Chin. Phys. B 21 104203

    [27]

    Qiao L Y, Xu L X, Gao M 2013 Infrared Technology 35 88 (in Chinese) [乔立永, 徐立新, 高敏 2013 红外技术 35 88]

  • [1]

    Zhou B, Wang Y Z, Ying J J 2007 Infrared Technology 25 30 (in Chinese) [周冰, 王永仲, 应家驹 2007 红外技术 25 30]

    [2]

    Zhang H J, Liang Y, Cheng Y M, Pan Q, Zhang H C 2006 Infrared Technology 28 423 (in Chinese) [张惠娟, 梁彦, 程咏梅, 潘泉, 张洪才 2006 红外技术 28 423]

    [3]

    Chen Y 1989 IEEE Transactions on Aerospace and Electronic Systems 25 343

    [4]

    Reed I S, Gagliardi R M, Stotts L B 1990 IEEE Transactions on Aerospace and Electronic Systems 26 434

    [5]

    Gao C Q, Zhan T Q, Li Q, Jing X R 2008 Journal of Chongqing University of Posts and Telecommuni cations(Natural Science Edition) 37 907 (in Chinese) [高陈强, 张天骐, 李强, 景小荣 2010 重庆邮电大学学报 (自然科学版) 37 907]

    [6]

    Xi X L, Zhou X D, Zhang J 2012 System Engineering and Electronics 34 40 (in Chinese) [奚晓梁, 周晓东, 张健 2012 系统工程与电子技术 34 40]

    [7]

    Qin H L, Li J, Zhou H X, Lai R, Liu S Q 2011 J. Infrared Millim Waves 30 162 (in Chinese) [秦翰林, 李佳, 周慧鑫, 赖睿, 刘上乾 2011 红外与毫米波学报 30 162]

    [8]

    Wang J, Fu Y Q 2013 Chin. Phys. B 22 090206

    [9]

    Jiang B, Wang H Q, Li X, Guo G R 2006 Acta Phys. Sin. 55 3985 (in Chinese) [姜斌, 王宏强, 黎湘, 郭桂蓉 2006 物理学报 55 3985]

    [10]

    Zhang L, Yang Y, Wang J G, Zhao X, Fang Z L, Yuan X C 2013 Chin. Phys. B 22 054202

    [11]

    Hou W, Yu Q F, Lei Z H, Liu X C 2014 Acta Phys. Sin. 63 074211 (in Chinese) [侯旺, 于起峰, 雷志辉, 刘晓春 2014 物理学报 63 074211]

    [12]

    Zhang W Z, Cheng Z B, Xia B F, Ling B, Cao X Q 2014 Chin. Phys. B 23 044212

    [13]

    Wu Y R, Cheng Y M, Zhao Y Q, Gao S B 2011 J. Infrared Millim Waves 30 142 (in Chinese) [吴燕茹, 程咏梅, 赵永强, 高仕博 2011 红外与毫米波学报 30 142]

    [14]

    Cao Y, Liu R, Yang J 2008 Int J. Infrared Milli Waves 29 385

    [15]

    Cao Y, Yang J, Liu R M 2009 J. Infrared Millim Waves 28 235 (in Chinese) [曹原, 杨杰, 刘瑞明 2009 红外与毫米波学报 28 235]

    [16]

    Gu Y, Wang C, Liu B, Zhang Y 2010 IEEE Geoscience and Remote Sensing Letters 7 469

    [17]

    Zhao J J, Tang Z Y, Yang J, Liu E Q 2011 J. Infrared Millim Waves 30 156 (in Chinese) [赵佳佳, 唐峥远, 杨杰, 刘尔琦, 周越 2011 红外与毫米波学报 30 156]

    [18]

    Hua L L, Xu N, Yang G 2014 Chin. Phys. B 23 064201

    [19]

    Chen X, Zhang J S 2014 Chin. Phys. B 23 096401

    [20]

    Jiang D 2001 The Theory of Information and Coding (Hefei: Publishing House of the University of Science and Technology of China) p126 (in Chinese) [姜丹 2001 信息论与编码(合肥: 中国科技大学出版社) 第126页]

    [21]

    Yang L 2006 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [杨磊 2006 博士学位论文 (上海: 上海交通大学)]

    [22]

    Kim S, Lee J 2011 Pattern Anal. Applic. 14 57

    [23]

    Reed I S, Gagliardi R M, Shao H M 1983 IEEE Transactions on Aerospace and Electronic Systems 19 898

    [24]

    Reed I, Gagliardi R, Stotts L 1988 IEEE Transactions on Aerospace and Electronic Systems 24 327

    [25]

    Liang D C, Wei M G, Gu J Q, Ying Z P, Ou Y C M, Tian Z, He M X, Han J G, Zhang W L 2014 Acta Phys. Sin. 63 214102 (in Chinese) [梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力 2014 物理学报 63 214102]

    [26]

    Dai Y, Zhang J X 2012 Chin. Phys. B 21 104203

    [27]

    Qiao L Y, Xu L X, Gao M 2013 Infrared Technology 35 88 (in Chinese) [乔立永, 徐立新, 高敏 2013 红外技术 35 88]

  • [1] Xu Ming-Wei, Du Kang, Li Ke, Wang Fei-Xiang, Xiao Ti-Qiao. High sensitivity tracking of free-moving targets in time-varying complex backgrounds. Acta Physica Sinica, 2023, 72(15): 150701. doi: 10.7498/aps.72.20230360
    [2] Liang Hua-Zhi, Zhang Jing-Yi. Evolution of complexity for critical neutral Gauss-Bonnet-anti-de Sitter black holes. Acta Physica Sinica, 2021, 70(3): 030401. doi: 10.7498/aps.70.20201286
    [3] Gong Long-Yan, Yang Hui, Zhao Sheng-Mei. Influence of intermediated measurements on quantum statistical complexity of single driven qubit. Acta Physica Sinica, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [4] Cui Zhi-Gao, Wang Hua, Li Ai-Hua, Wang Tao, Li Hui. Moving object detection based on optical flow field analysis in dynamic scenes. Acta Physica Sinica, 2017, 66(8): 084203. doi: 10.7498/aps.66.084203
    [5] Bi Guo-Ling, Xu Zhi-Jun, Chen Tao, Wang Jian-Li, Zhang Yan-Kun. Complex background model and foreground detection based on random aggregation. Acta Physica Sinica, 2015, 64(15): 150701. doi: 10.7498/aps.64.150701
    [6] Hou Wang, Yu Qi-Feng, Lei Zhi-Hui, Liu Xiao-Chun. A block-based improved recursive moving-target-indication algorithm. Acta Physica Sinica, 2014, 63(7): 074208. doi: 10.7498/aps.63.074208
    [7] Gao Wen, Tang Yang, Zhu Ming. Study on the cascade classifier in target detection under complex background. Acta Physica Sinica, 2014, 63(9): 094204. doi: 10.7498/aps.63.094204
    [8] Sun Ke-Hui, He Shao-Bo, Yin Lin-Zi, Duo Li-Kun. Application of FuzzyEn algorithm to the analysis of complexity of chaotic sequence. Acta Physica Sinica, 2012, 61(13): 130507. doi: 10.7498/aps.61.130507
    [9] Xing Hong-Yan, Gong Ping, Xu Wei. Small target detection in the background of sea clutter using fractal method. Acta Physica Sinica, 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [10] Chen Xiao-Jun, Li Zan, Bai Bao-Ming, Cai Jue-Ping. New complexity metric of chaotic pseudorandom sequences using fuzzy relationship entropy. Acta Physica Sinica, 2011, 60(6): 064215. doi: 10.7498/aps.60.064215
    [11] Bian Hong-Rui, Wang Jiang, Han Chun-Xiao, Deng Bin, Wei Xi-Le, Che Yan-Qiu. Features extraction from EEG signals induced by acupuncture based on the complexity analysis. Acta Physica Sinica, 2011, 60(11): 118701. doi: 10.7498/aps.60.118701
    [12] Sun Ke-Hui, He Shao-Bo, Sheng Li-Yuan. Complexity analysis of chaotic sequence based on the intensive statistical complexity algorithm. Acta Physica Sinica, 2011, 60(2): 020505. doi: 10.7498/aps.60.020505
    [13] Yang Ru, Zhang Bo, Zhao Shou-Bai, Lao Yu-Jin. Arithmetic complexity of discrete map of converter based on symbol time series. Acta Physica Sinica, 2010, 59(6): 3756-3762. doi: 10.7498/aps.59.3756
    [14] Luo Song-Jiang, Qiu Shui-Sheng, Luo Kai-Qing. Research on the stability of complexity of chaos-based pseudorandom sequence. Acta Physica Sinica, 2009, 58(9): 6045-6049. doi: 10.7498/aps.58.6045
    [15] Liu Xiao-Feng, Yu Wen-Li. A symbolic dynamics approach to the complexity analysis of event-related potentials. Acta Physica Sinica, 2008, 57(4): 2587-2594. doi: 10.7498/aps.57.2587
    [16] He Liang, Du Lei, Zhuang Yi-Qi, Li Wei-Hua, Chen Jian-Ping. Multiscale entropy complexity analysis of metallic interconnection electromigration noise. Acta Physica Sinica, 2008, 57(10): 6545-6550. doi: 10.7498/aps.57.6545
    [17] Jiang Bin, Wang Hong-Qiang, Li Xiang, Guo Gui-Rong. A novel method of target detection based on the sea clutter. Acta Physica Sinica, 2006, 55(8): 3985-3991. doi: 10.7498/aps.55.3985
    [18] Hou Wei, Feng Guo-Lin, Dong Wen-Jie. Investigation about the Lorenz model and logistic equation based on the complexity. Acta Physica Sinica, 2005, 54(8): 3940-3946. doi: 10.7498/aps.54.3940
    [19] Hou Wei, Feng Guo-Lin, Gao Xin-Quan, Chou Ji-Fan. Investigation on the time series of ice core and stalagmite based on the analysis of complexity. Acta Physica Sinica, 2005, 54(5): 2441-2447. doi: 10.7498/aps.54.2441
    [20] Cai Jue-Ping, Li Zan, Song Wen-Tao. Analysis on the chaotic pseudo-random sequence complexity. Acta Physica Sinica, 2003, 52(8): 1871-1876. doi: 10.7498/aps.52.1871
Metrics
  • Abstract views:  6364
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  11 June 2015
  • Accepted Date:  18 July 2015
  • Published Online:  05 December 2015

/

返回文章
返回