-
The converter topologically conjugates with its symbol time series. The research of converter can be reduced to the research of symbol time series, and more common results can be gotten. The complexity of converter is studied based on arithmetic complexity of symbol time series, characteristics are gotten from its inner structure. Compared with statistics complexity, arithmetic complexity can describe working cycling and catastrophe point, thus the theoretical basis for understanding the complexity characteristics of converter is provided.
-
Keywords:
- symbol time series /
- discrete map /
- arithmetic complexity /
- bifurcation chart
[1] [1]Cai J P, Li Z, Song W T 2003 Acta Phys. Sin. 52 1871 (in Chinese) [蔡觉平、 李赞、 宋文涛 2003 物理学报 52 1871]
[2] [2]Zhang D Z 2007 Acta Phys. Sin. 56 3152 (in Chinese) [张佃中 2007 物理学报 56 3152]
[3] [3]Hou W, Feng G L, Dong W J 2005 Acta Phys. Sin. 54 3940 (in Chinese) [侯威、 封国林、 董文杰 2005 物理学报 54 3940]
[4] [4]Liu X F, Yu W L 2008 Acta Phys. Sin. 57 2587 (in Chinese) [刘小峰、 俞文莉 2008 物理学报 57 2587]
[5] [5]Zhu Y H,Dong Y J 2001 Acta Mathe. Sci. A 21 527(in Chinese)[朱勇华、 董亚鹃 2001 数学物理学报 A 21 527]
[6] [6]Zong G D, Wu Y Q 2004 Fifth World Congress on Intelligent Control and Automation (Hangzhou: IEEE) p1119
[7] [7]Luo X S, Chen G R 2003 Acta Phys. Sin. 52 12 (in Chinese) [罗晓曙、 陈关荣 2003 物理学报 52 12]
[8] [8] Li M, Ma X K, Dai D, Zhang H 2005 Acta Phys. Sin. 54 1084 (in Chinese) [李明、 马西魁、 戴栋、 张浩 2005 物理学报 54 1084]
[9] [9]Dai D, Ma X K,Li X F 2003 Acta Phys. Sin. 52 2369 (in Chinese) [戴栋、 马西魁、 李小峰 2003 物理学报 52 2369]
[10] ]Zhou Y F, Chen J N 2004 Acta Phys. Sin. 53 3676 (in Chinese) [周宇飞、 陈军宁 2004 物理学报 53 3676]
[11] ]Zhou Y L, Luo X S 2003 Acta Phys. Sin. 52 2978 (in Chinese) [邹艳丽、 罗晓曙 2003 物理学报 52 2978]
[12] ]Baranovski A L, Daems D 1995 Int. J. Bifur. Chaos 5 1585
[13] ]Lasota A A, Mackey M C 1994 Chaos, Fractals, and Noise (Berlin: Springer Verlag)
[14] ] Baranovski A L, Schwarz W 2003 IEEE International Symposium on Circuits and Systems (London: IEEE) pp25—28
[15] ]Yang R, Zhang B 2006 Acta Phys. Sin. 55 2369 (in Chinese) [杨汝、 张波 2006 物理学报 55 2369]
[16] ]Liu B Z, Peng J H 2005 Nonlinear Dynamics(Beijing: Higher Education Press)p244 (in Chinese)[刘秉正、 彭建华 2005 非线性动力学 (北京: 高等教育出版社)第244页]
[17] ]Xie X X, Li S, Zhang C L, Li J K 2005 Comp. Sys. Comp. Sci. 2(3) 61 (in Chinese)[解幸幸、 李舒、 张春利、 李建康 2005 复杂系统与复杂性科学 2(3) 61]
[18] ]Lempel A, Ziv J 1976 IEEE Trans. Inform. Theor. 22 75
-
[1] [1]Cai J P, Li Z, Song W T 2003 Acta Phys. Sin. 52 1871 (in Chinese) [蔡觉平、 李赞、 宋文涛 2003 物理学报 52 1871]
[2] [2]Zhang D Z 2007 Acta Phys. Sin. 56 3152 (in Chinese) [张佃中 2007 物理学报 56 3152]
[3] [3]Hou W, Feng G L, Dong W J 2005 Acta Phys. Sin. 54 3940 (in Chinese) [侯威、 封国林、 董文杰 2005 物理学报 54 3940]
[4] [4]Liu X F, Yu W L 2008 Acta Phys. Sin. 57 2587 (in Chinese) [刘小峰、 俞文莉 2008 物理学报 57 2587]
[5] [5]Zhu Y H,Dong Y J 2001 Acta Mathe. Sci. A 21 527(in Chinese)[朱勇华、 董亚鹃 2001 数学物理学报 A 21 527]
[6] [6]Zong G D, Wu Y Q 2004 Fifth World Congress on Intelligent Control and Automation (Hangzhou: IEEE) p1119
[7] [7]Luo X S, Chen G R 2003 Acta Phys. Sin. 52 12 (in Chinese) [罗晓曙、 陈关荣 2003 物理学报 52 12]
[8] [8] Li M, Ma X K, Dai D, Zhang H 2005 Acta Phys. Sin. 54 1084 (in Chinese) [李明、 马西魁、 戴栋、 张浩 2005 物理学报 54 1084]
[9] [9]Dai D, Ma X K,Li X F 2003 Acta Phys. Sin. 52 2369 (in Chinese) [戴栋、 马西魁、 李小峰 2003 物理学报 52 2369]
[10] ]Zhou Y F, Chen J N 2004 Acta Phys. Sin. 53 3676 (in Chinese) [周宇飞、 陈军宁 2004 物理学报 53 3676]
[11] ]Zhou Y L, Luo X S 2003 Acta Phys. Sin. 52 2978 (in Chinese) [邹艳丽、 罗晓曙 2003 物理学报 52 2978]
[12] ]Baranovski A L, Daems D 1995 Int. J. Bifur. Chaos 5 1585
[13] ]Lasota A A, Mackey M C 1994 Chaos, Fractals, and Noise (Berlin: Springer Verlag)
[14] ] Baranovski A L, Schwarz W 2003 IEEE International Symposium on Circuits and Systems (London: IEEE) pp25—28
[15] ]Yang R, Zhang B 2006 Acta Phys. Sin. 55 2369 (in Chinese) [杨汝、 张波 2006 物理学报 55 2369]
[16] ]Liu B Z, Peng J H 2005 Nonlinear Dynamics(Beijing: Higher Education Press)p244 (in Chinese)[刘秉正、 彭建华 2005 非线性动力学 (北京: 高等教育出版社)第244页]
[17] ]Xie X X, Li S, Zhang C L, Li J K 2005 Comp. Sys. Comp. Sci. 2(3) 61 (in Chinese)[解幸幸、 李舒、 张春利、 李建康 2005 复杂系统与复杂性科学 2(3) 61]
[18] ]Lempel A, Ziv J 1976 IEEE Trans. Inform. Theor. 22 75
计量
- 文章访问数: 8489
- PDF下载量: 1003
- 被引次数: 0