Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization design of laser X-ray radiography for density diagnosis in compressed matter

Zhang Tian-Kui Han Dan Wu Yu-Chi Yan Yong-Hong Zhao Zong-Qing Gu Yu-Qiu

Citation:

Optimization design of laser X-ray radiography for density diagnosis in compressed matter

Zhang Tian-Kui, Han Dan, Wu Yu-Chi, Yan Yong-Hong, Zhao Zong-Qing, Gu Yu-Qiu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The shock wave driven by laser is an important tool for investigating equation of state and can provide the state of compressed matter. The X-ray source, generated by the short-pulse intense laser interaction with the solid target, has the properties of short pulse, small spot, high yield and tunable energy. Therefore the X-ray source is the first chosen as a backlighter for the diagnosis of dynamic process. The model of the X-ray radiography is established by Monte Carlo code Geant4. The density distribution in an object is obtained by hydrodynamic code Multi-1D and the laser parameters are obtained by the XGIII laser facility. Under the condition of one-dimensional density the object in the shape of rectangular solid, three evaluation criterions, root mean square, peak value and ratio of rise gradient, are defined for evaluating density results. The signal-to-noise, spatial resolution, and contrast of radiography results have been optimized. First, the signal-to-noise has been optimized and the optimization magnification is 5.6 with the photon yield 1012. Second, the spatial resolution according to different spot X-ray source has been simulated by designing resolution plate radiography. Third, in the condition of same magnification, the influence of source yield on radiography result has been analyzed. Fourth, the radiography results of different X-ray energy have been simulated. The optimization energy for radiography requests that the penetrability ratio is greater than 1.5 and the photon count in pixel after penetrating the compressed matter is greater than 3000. And the optimum criteria make sure that the radiography images simultaneously have high contrast and high signal-to-noise. The radiography of one-dimensional density object in the shape of cylinder has been simulated. The Abel inversion algorithm is established based on Radon inversion. The inversion result accords well with the designed density distribution in simulation at the request of the radius of X-ray source less than 5 m. The inversion result basically accords with the designed density distribution in simulation at the request of the radius of X-ray source less than 15 m. This work will contribute to the measurement experiments on the compressed matter achieved by laser-driven-shock and provide the reference for the optimization of radiography based on X-ray.
      Corresponding author: Zhao Zong-Qing, zhaozongqing99@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505166, 11375161, 11405159, 11174259) and the Foundation of Science and Technology on Plasma Physics Laboratory, China (Grant Nos. 9140C680301150C68297, 9140C680306120C68253, 9140C680302130C68242).
    [1]

    Ravasio A, Koenig M, Pape S L, Benuzzi-Mounaix A, Park H S, Cecchetti C, Patel P, Schiavi A, Ozaki N, Mackinnon A, Loupias B, Batani D, Boehly T, Borghesi M, Dezulian R, Henry E, Notley M, Bandyopadhyay S, Clarke R, Vinci T 2008 Phys. Plasmas 15 060701

    [2]

    Pape L S, Neumayer P, Fortmann C, Doppner T, Davis P, Kritcher A, Landen O, Glenzer S 2010 Phys. Plasmas 17 056309

    [3]

    Liu T H, Hao Z Q, Gao X, Liu Z H, Lin J Q 2014 Chin. Phys. B 23 085203

    [4]

    Wang J X, Gao X, Song C, Lin J Q 2015 Acta Phys. Sin. 64 045204 (in Chinese) [王绩勋, 高勋, 宋超, 林景全 2015 物理学报 64 045204]

    [5]

    Brambrink E, Wei H G, Barbrel B, Audebert P, Benuzzi-Mounaix A, Boehly T, Endo T, Gregory C D, Kimura T, Kodama R, Ozaki N, Park H S, Koenig M 2009 Phys. Rev. E 80 056407

    [6]

    Neumayer P, Fortmann C, Dppner T, Davis P, Falcone R W, Kritcher A L, Landen O L, Lee H J, Lee R W, Niemann C, Pape L S, Glenzer S H 2010 Phys. Rev. Lett. 105 075003

    [7]

    Loupias B, Perez F, Benuzzi-Mounaix A, Ozaki N, Rabec M, Gloahec L E, Pikuz T A, Faenov A Y, Aglitskiy Y, Koenig M 2009 Laser and Particle Beams 27 601

    [8]

    Brambrink E, Wei H G, Barbrel B, Audebert P, Benuzzi-Mounaix A, Boehly T, Endo T, Gregory C, Kimura T, Kodama R, Ozaki N, Park H S, Gloahec R L M, Koenig M 2009 Phys. Plasmas 16 033101

    [9]

    Fortney J J, Glenzer S H, Koenig M, Militzer B, Saumon D, Valencia D 2009 Phys. Plasmas 16 041003

    [10]

    Pape L S, Macphee A, Hey D, Patel P, Mackinnon A, Key M, Pasley J, Wei M, Chen S, Ma T, Beg F, Alexander N, Stephens R, Offerman D, Link A, Van-Woerkom L, Freeman R 2008 Rev. Sci. Instrum. 79 106104

    [11]

    Ravasio A, Romagnani L, Pape L S, Benuzzi-Mounaix A, Cecchetti C, Batani D, Boehly T, Borghesi M, Dezulian R, Gremillet L, Henry E, Hicks D, Loupias B, MacKinnon A, Ozaki N, Park H S, Patel P, Schiavi A, Vinci T, Clarke R, Notley M, Bandyopadhyay S, Koenig M 2010 Phys. Rev. E 82 016407

    [12]

    Wang R R, Chen W M, Wang W, Dong J Q, Xiao S L 2010 Chin. Phys. B 19 075202

    [13]

    Zhu W, Ye Y, Zhu P F, Liu Z Q, Xia C Q, Shen B F, Liang X Y, Leng Y X, Qian W X, Li J, Li 4 R, Li Z Y, Peng Q X 2012 High Power Laser and Particle Beams 24 2651 (in Chinese) [朱巍, 叶雁, 朱鹏飞, 刘振清, 夏长权, 沈百飞, 梁晓燕, 冷雨欣, 钱伟新, 李军, 李泽仁, 李作友, 彭其先 2012 强激光与粒子束 24 2651]

    [14]

    Xiong J, Dong J Q, Jia G, Wang R R, Wang W, Fu S Z, Zheng W D 2013 Chin. Phys. B 22 065201

    [15]

    Park H S, Chambers D M, Chung H K, Clarke R J, Eagleton R, Giraldez E, Goldsack T, Heathcote R, Izumi N, Key M H, King J A, Koch J A, Landen O L, Nikroo A, Patel P K, Price D F, Remington B A, Robey H F, Snavely R A, Steinman D A, Stephens R B, Stoeckl C, Storm M, Tabak M, Theobald W, Town R P J, Wickersham J E, Zhang B B 2006 Phys. Plasmas 13 056309

    [16]

    Park H S, Maddox B R, Giraldez E, Hatchett S P, Hudson L T, Izumi N, Key M H, Pape L S, MacKinnon A J, MacPhee A G, Patel P K, Phillips T W, Remington B A, Seely J F, Tommasini R, Town R, Workman J, Brambrink E 2008 Phys. Plasmas 15 072705

    [17]

    Tommasini R, Hatchett S P, Hey D S, Iglesias C, Izumi N, Koch J A, Landen O L, MacKinnon A J, Sorce C, Delettrez J A, Glebov V Y, Sangster T C, Stoeckl C 2011 Phys. Plasmas 18 056309

    [18]

    Vaughan K, Moore A S, Smalyuk V, Wallace K, Gate D, Glendinning S G, McAlpin S, Park H S, Sorce C, Stevenson R M 2013 High Energ. Dens. Phys. 9 635

    [19]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun 49 475

    [20]

    Buis E J, Vacanti G 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 599 260

    [21]

    Shao H, Zhu D P, Wu Y X 2005 J. Shanghai JiaoTong Univ. 39 1375 (in Chinese) [邵华, 朱丹平, 吴毅雄 2005 上海交通大学学报 39 1375]

    [22]

    Wang J, Zhao Z Q, He W H, Zhu B, Dong K G, Wu Y C, Zhang T K, Niu G, Zhou K N, Xie N, Zhou W M, Gu Y Q 2015 Chin. Opt. Lett. 13 031001

  • [1]

    Ravasio A, Koenig M, Pape S L, Benuzzi-Mounaix A, Park H S, Cecchetti C, Patel P, Schiavi A, Ozaki N, Mackinnon A, Loupias B, Batani D, Boehly T, Borghesi M, Dezulian R, Henry E, Notley M, Bandyopadhyay S, Clarke R, Vinci T 2008 Phys. Plasmas 15 060701

    [2]

    Pape L S, Neumayer P, Fortmann C, Doppner T, Davis P, Kritcher A, Landen O, Glenzer S 2010 Phys. Plasmas 17 056309

    [3]

    Liu T H, Hao Z Q, Gao X, Liu Z H, Lin J Q 2014 Chin. Phys. B 23 085203

    [4]

    Wang J X, Gao X, Song C, Lin J Q 2015 Acta Phys. Sin. 64 045204 (in Chinese) [王绩勋, 高勋, 宋超, 林景全 2015 物理学报 64 045204]

    [5]

    Brambrink E, Wei H G, Barbrel B, Audebert P, Benuzzi-Mounaix A, Boehly T, Endo T, Gregory C D, Kimura T, Kodama R, Ozaki N, Park H S, Koenig M 2009 Phys. Rev. E 80 056407

    [6]

    Neumayer P, Fortmann C, Dppner T, Davis P, Falcone R W, Kritcher A L, Landen O L, Lee H J, Lee R W, Niemann C, Pape L S, Glenzer S H 2010 Phys. Rev. Lett. 105 075003

    [7]

    Loupias B, Perez F, Benuzzi-Mounaix A, Ozaki N, Rabec M, Gloahec L E, Pikuz T A, Faenov A Y, Aglitskiy Y, Koenig M 2009 Laser and Particle Beams 27 601

    [8]

    Brambrink E, Wei H G, Barbrel B, Audebert P, Benuzzi-Mounaix A, Boehly T, Endo T, Gregory C, Kimura T, Kodama R, Ozaki N, Park H S, Gloahec R L M, Koenig M 2009 Phys. Plasmas 16 033101

    [9]

    Fortney J J, Glenzer S H, Koenig M, Militzer B, Saumon D, Valencia D 2009 Phys. Plasmas 16 041003

    [10]

    Pape L S, Macphee A, Hey D, Patel P, Mackinnon A, Key M, Pasley J, Wei M, Chen S, Ma T, Beg F, Alexander N, Stephens R, Offerman D, Link A, Van-Woerkom L, Freeman R 2008 Rev. Sci. Instrum. 79 106104

    [11]

    Ravasio A, Romagnani L, Pape L S, Benuzzi-Mounaix A, Cecchetti C, Batani D, Boehly T, Borghesi M, Dezulian R, Gremillet L, Henry E, Hicks D, Loupias B, MacKinnon A, Ozaki N, Park H S, Patel P, Schiavi A, Vinci T, Clarke R, Notley M, Bandyopadhyay S, Koenig M 2010 Phys. Rev. E 82 016407

    [12]

    Wang R R, Chen W M, Wang W, Dong J Q, Xiao S L 2010 Chin. Phys. B 19 075202

    [13]

    Zhu W, Ye Y, Zhu P F, Liu Z Q, Xia C Q, Shen B F, Liang X Y, Leng Y X, Qian W X, Li J, Li 4 R, Li Z Y, Peng Q X 2012 High Power Laser and Particle Beams 24 2651 (in Chinese) [朱巍, 叶雁, 朱鹏飞, 刘振清, 夏长权, 沈百飞, 梁晓燕, 冷雨欣, 钱伟新, 李军, 李泽仁, 李作友, 彭其先 2012 强激光与粒子束 24 2651]

    [14]

    Xiong J, Dong J Q, Jia G, Wang R R, Wang W, Fu S Z, Zheng W D 2013 Chin. Phys. B 22 065201

    [15]

    Park H S, Chambers D M, Chung H K, Clarke R J, Eagleton R, Giraldez E, Goldsack T, Heathcote R, Izumi N, Key M H, King J A, Koch J A, Landen O L, Nikroo A, Patel P K, Price D F, Remington B A, Robey H F, Snavely R A, Steinman D A, Stephens R B, Stoeckl C, Storm M, Tabak M, Theobald W, Town R P J, Wickersham J E, Zhang B B 2006 Phys. Plasmas 13 056309

    [16]

    Park H S, Maddox B R, Giraldez E, Hatchett S P, Hudson L T, Izumi N, Key M H, Pape L S, MacKinnon A J, MacPhee A G, Patel P K, Phillips T W, Remington B A, Seely J F, Tommasini R, Town R, Workman J, Brambrink E 2008 Phys. Plasmas 15 072705

    [17]

    Tommasini R, Hatchett S P, Hey D S, Iglesias C, Izumi N, Koch J A, Landen O L, MacKinnon A J, Sorce C, Delettrez J A, Glebov V Y, Sangster T C, Stoeckl C 2011 Phys. Plasmas 18 056309

    [18]

    Vaughan K, Moore A S, Smalyuk V, Wallace K, Gate D, Glendinning S G, McAlpin S, Park H S, Sorce C, Stevenson R M 2013 High Energ. Dens. Phys. 9 635

    [19]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun 49 475

    [20]

    Buis E J, Vacanti G 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 599 260

    [21]

    Shao H, Zhu D P, Wu Y X 2005 J. Shanghai JiaoTong Univ. 39 1375 (in Chinese) [邵华, 朱丹平, 吴毅雄 2005 上海交通大学学报 39 1375]

    [22]

    Wang J, Zhao Z Q, He W H, Zhu B, Dong K G, Wu Y C, Zhang T K, Niu G, Zhou K N, Xie N, Zhou W M, Gu Y Q 2015 Chin. Opt. Lett. 13 031001

  • [1] Zhao Jia-Yi, Hu Peng, Wang Yu-Lin, Wang Jin-Can, Tang Hui-Bo, Hu Guang-Yue. Optimization of pulsed intense magnetic field device for laser plasma experiment via inductively coupled coil. Acta Physica Sinica, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [2] Li Xiao-Lu, Bai Ya, Liu Peng. Control of the terahertz spectra generated from laser induced plasma. Acta Physica Sinica, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [3] Li Bai-Hui, Gao Xun, Song Chao, Lin Jing-Quan. Laser induced plasma spectral characteristics of Cu with magnetically and spatially combined confinement. Acta Physica Sinica, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [4] Ling Wei-Jun, Dong Quan-Li, Zhang Lei, Zhang Shao-Gang, Dong Zhong, Wei Kai-Bin, Wang Shou-Jun, He Min-Qing, Sheng Zheng-Ming, Zhang Jie. Laser driven shock accelerated ion energy spectrumbroadening mechanisms in over-dense plasmas. Acta Physica Sinica, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [5] Zheng Bing-Song, Sun Yan-Qian, Chen Yu, Ma Jing-Long, Li Ying-Jun. Ne-like Ti X-ray laser driven by a single femtosecond laser. Acta Physica Sinica, 2010, 59(10): 7020-7026. doi: 10.7498/aps.59.7020
    [6] Yu Quan-Zhi, Li Yu-Tong, Jiang Xiao-Hua, Liu Yong-Gang, Wang Zhe-Bin, Dong Quan-Li, Liu Feng, Zhang Zhe, Huang Li-Zhen, C. Danson, D. Pepler, Ding Yong-Kun, Fu Shi-Nian, Zhang Jie. Infulence of electron temperature on the two peaks of Thomson scattering ion-acoustic waves in laser plasmas. Acta Physica Sinica, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [7] Zheng Wu-Di, Zhang Guo-Ping, Wang Chen, Sun Jin-Ren, Fang Zhi-Heng, Gu Yuan, Fu Si-Zu. Diagnosis of electron density in spot-focused CH plasma with X-ray Laser M-Z interferometer. Acta Physica Sinica, 2007, 56(7): 3984-3989. doi: 10.7498/aps.56.3984
    [8] Zhang Qiu-Ju, Sheng Zheng-Ming, Wang Xing-Hai, Man Bao-Yuan, Cang Yu, Zhang Jie. Vacancy of laser field induced by phase reflection in underdense plasmas and its relation to laser-plasma parameters. Acta Physica Sinica, 2006, 55(5): 2347-2351. doi: 10.7498/aps.55.2347
    [9] Xu Hui, Sheng Zheng-Ming, Zhang Jie. Relativistic effects on resonance absorption in laser-plasma interaction. Acta Physica Sinica, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [10] Wang Wei, Zhang Jie, Zhao Gang. Simulation of the effects of X-ray emission from accretion disks on the interstellar materials. Acta Physica Sinica, 2006, 55(1): 287-293. doi: 10.7498/aps.55.287
    [11] Chen Min, Sheng Zheng-Ming, Zheng Jun, Zhang Jie. Numerical simulation of acceleration of electrons and ions in the interaction of intense laser pulses with dense gaseous targets. Acta Physica Sinica, 2006, 55(5): 2381-2388. doi: 10.7498/aps.55.2381
    [12] Yan Fei, Zhang Jie, Dong Quan-Li, Lu Xin, Li Ying-Jun. Numerical simulation of x-ray lasers pumped by grazing incidence pulses. Acta Physica Sinica, 2005, 54(10): 4741-4746. doi: 10.7498/aps.54.4741
    [13] Yan Fei, Zhang Jie, Lu Xin. Modeling of refraction and saturation effects of x-ray lasers. Acta Physica Sinica, 2005, 54(2): 715-720. doi: 10.7498/aps.54.715
    [14] Zhang Qiu-Ju, Sheng Zheng-Ming, Cang Yu, Zhang Jie. Density modulation produced by ultrashort laser pulses and the phase reflection induced in underdense plasmas. Acta Physica Sinica, 2005, 54(9): 4217-4222. doi: 10.7498/aps.54.4217
    [15] Wang Wei, Zhang Jie, Dong Quan-Li, V.K.Senecha. Effects of target thickness on spectral characteristics of x-ray flux from the laser-produced plasmas. Acta Physica Sinica, 2004, 53(3): 967-972. doi: 10.7498/aps.53.967
    [16] Fu Xi-Quan, Guo Hong. Propagation of x-ray in the laser plasma and its effect in the diagnosis of elec tric density. Acta Physica Sinica, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [17] Gu Zhen-Yu, Ji Pei-Yong. . Acta Physica Sinica, 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [18] . Acta Physica Sinica, 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [19] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
    [20] CHEN BO, ZHENG ZHI-JIAN, DING YONG-KUN, LI SAN-WEI, WANG YAO-MEI. DETERMINATION OF ELECTRON TEMPERATURE IN LASER-PRODUCED PLASMAS BY ISOELECTRONIC XRAY SPECTROSCOPY. Acta Physica Sinica, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
Metrics
  • Abstract views:  5264
  • PDF Downloads:  163
  • Cited By: 0
Publishing process
  • Received Date:  17 July 2015
  • Accepted Date:  31 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回