Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film

Liu En-Hua Chen Zhao Wen Xiao-Li Chen Chang-Le

Citation:

Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film

Liu En-Hua, Chen Zhao, Wen Xiao-Li, Chen Chang-Le
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Multiferroics simultaneously exhibit several order parameters such as ferroelectricity and antiferromagnetism, representing an appealing class of multifunctional material. As the only multiferroics above room temperature, BiFeO3 (BFO) becomes an attractive choice for a wide variety of applications in the areas of sensors and spintronic devices. The coexistence of several order parameters brings about novel physical phenomena, for example, the magnetoelectric coupling effect. It allows the reversal of ferroelectric polarization by a magnetic field or the control of magnetic order parameter by an electric field. Heterostructure interface plays an important role in enhancing the ferroelectric and magnetic properties of multiferroic materials. Furthermore, the magnetoelectric coupling at the interface between the antiferromagnetism BFO and a ferromagnetic film has the close relation with achieving a functional multiferroic-ferromagnetic heterostructure. In order to determine the relationship between the multiferroic property and the interface experimentally, we prepare the Bi0.8Ba0.2FeO3(BBFO)/La2/3Sr1/3MnO3(LSMO) heterostructure on an SrTiO3(STO) substrate by pulsed laser deposition, and the structure characteristics and ferroelectric and magnetic properties are investigated. X-ray diffraction analysis shows that BBFO and LSMO films are epitaxially grown as single-phase. The further study by high-resolution transmission electron microscopy determines that the BBFO film has a tetragonal structure. The ferroelectric and magnetic measurements show that the magnetic and the ferroelectric properties are simultaneously improved, and the maximum values of the remnant polarization (2Pr) and the saturation magnetization of the heterostructure at room temperature are about 3.25 C/cm2 and 112 emu/cm3, respectively. The reasons for enhancing the ferroelectric and ferromagnetic properties of heterostructure are demonstrated by X-ray photoelectron spectrum that shows being unrelated to the valence states of Fe element. On the contrary, interface effect plays a major role. In addition, the magnetic resistivities and dielectric properties of BBFO/LSMO heterostructure are investigated at temperatures in a range of 50 K to 300 K, finding that magnetoresistance (MR) and magnetodielectric (MD) are respectively about -42.2% and 21.9% at 70 K with a magnetic field of 0.8 T, and the transition of magnetic phase takes place near 180 K. Furthermore, the temperature dependences of magnetodielectric and magnetoloss (ML) present opposite tendencies, suggesting that magnetodielectric is caused by Maxwell-Wagner effect and the magnetoresistance. Experimental results reveal that heterogeneous interface effect shows the exceptional advantages in enhancing multiferroic property and magnetoelectric coupling effect of complex heterostructure material. It is an effective way to speed up the application of multiferroic materials.
      Corresponding author: Chen Zhao, zhaoch17@nwpu.edu.cn,zhaoch17@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61078057, 61471301), Natural Science Foundation of Shannxi Province, China (Grant Nos. 2015JM5259, 2011GM6013), Foundation for Fundamental Research, Northwestern Polytechnical University, China (Grant Nos. JC20110270, 3102014JCQ01029), Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, China (Grant Nos. LZUMMM2013001, LZUMMM2014007), the China Scholarship Council (Grant No. 201303070058), and the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20126102110045).
    [1]

    Bell A J 2008 J. Eur. Ceram. Soc. 28 1307

    [2]

    Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi R O, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur N D, Gaupp A, Abrudan R, Radu F, Barthlmy A, Bibes M 2011 Nat. Mater. 10 753

    [3]

    Xu Y, Zhang Z Y, Jin Z M, Pan Q F, Lin X, Ma G H, Cheng Z X 2014 Acta Phys. Sin. 63 117801 (in Chinese) [徐悦, 张泽宇, 金钻明, 潘群峰, 林贤, 马国宏, 程振祥 2014 物理学报 63 117801]

    [4]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [5]

    Lebeugle D, Colson D, Forget A, Viret M, Bataille A M, Gukasov A 2008 Phys. Rev. Lett. 100 227602

    [6]

    Annapu Reddy V, Pathak N, Nath R 2013 Solid State Commun. 171 40

    [7]

    Qi X D, Dho J, Tomov R, Blamire M G, MacManus-Driscoll J L {2005 Appl. Phys. Lett. 86 2903

    [8]

    Hwang J S, Cho J Y, Park S Y, Yoo Y J, Yoo P S, Lee B W, Lee Y P 2015 Appl. Phys. Lett. 106 062902

    [9]

    Costa L V, Deus R C, Foschini C R, Longo E, Cilense M, Simes A Z 2014 Mater. Chem. Phys. 144 476

    [10]

    Seidel J, Trassin M, Zhang Y, Maksymovych P, Uhlig T, Pan X 2014 Adv. Mater. 26 4376

    [11]

    Song G L, Su J, Zhang N, Chang F G {2015 Acta Phys. Sin. 64 088101 (in Chinese) [宋桂林, 苏健, 张娜, 常方高 2015 物理学报 64 088101]

    [12]

    Trassin M, Clarkson J D, Bowden S R, Liu J, Heron J T, Paull R J, Arenholz E, Pierce D T, Unguris J 2013 Phys. Rev. B 87 134426

    [13]

    Singamaneni S R, Prater J T, Nori S, Kumar D, Narayan J 2015 J. Appl. Phys. 117 17D908

    [14]

    Deng H L, Zhang M, Wei J Z, Chu S J, Du M Y, Yan H {2015 Solid-State Electron. 109 73

    [15]

    Li M, Ning M, Ma Y, Wu Q, Ong C K 2007 J. Phys. D 40 1603

    [16]

    Yang J C, Huang Y L, He Q, Chu Y H 2014 J. Appl. Phys. 116 066801

    [17]

    Ba H, Gajek M, Bibes M, Barthlmy A 2008 J. Phys.: Condens. Matter 20 434221

    [18]

    Yan F, Xing G Z, Li L 2014 Appl. Phys. Lett. 104 132904

    [19]

    Yin L H, Song W H, Jiao X L, Wu W B, Zhu X B, Sun Y P 2009 J. Phys. D: Appl. Phys. 42 205402

    [20]

    Yu P, Lee J S, Okamoto S, Rossell M D, Huijben M, Yang C H, Ramasse Q M 2010 Phys. Rev. Lett. 105 027201

    [21]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Spaldin N A 2003 Science 299 1721

    [22]

    Das R, Mandal K {2012 J. Magn. Magn. Mater. 324 1914

    [23]

    Wang D H, Goh W C, Ning M, Ong C K {2006 Appl. Phys. Lett. 88 2907

    [24]

    Yang C, Jiang J S, Qian F Z, Jiang D M, Wang C M, Zhang W G {2010 J. Alloys Compd. 507 30

    [25]

    Anderson P W 1950 Phys. Rev. 79 350

    [26]

    Rao S S, Prater J T, Wu F, Shelton C T, Maria J P, Narayan J 2013 Nano Lett. 13 5814

    [27]

    Singh S K, Ishiwara H, Maruyama K 2006 J. Appl. Phys. 100 064102

    [28]

    Wen X L, Chen Z, Lin X, Niu L W, Duan M M, Zhang Y J, Chen C L 2014 Chin. Phys. B 23 117703

    [29]

    Liu Y K, Yao Y P, Dong S N, Yang S W, Li X G 2012 Phys. Rev. B 86 075113

    [30]

    Majumdar S, Dijken S V {2013 J. Phys. D: Appl. Phys. 47 034010

    [31]

    Jin K J, Lu H B, Zhou Q L, Zhao K, Cheng B L, Chen Z H 2005 Phys. Rev. B 71 184428

    [32]

    Chen P, Xing D Y, Du Y W 2001 Phys. Rev. B 64 104402

    [33]

    Scott J F, Singh M K, Katiyar R S 2008 J. Phys. Condens. Matter 20 322203

    [34]

    Mandal P R, Nath T K 2014 J. Alloys Compd. 599 71

    [35]

    Ren P, Liu P, Xia B, Zou X, You L, Wang J L, Wang L 2012 AIP Adv. 2 022133

    [36]

    Singh H, Kumar A, Yadav K L {2011 Mater. Sci. Eng. B 176 542

    [37]

    Uniyal P, Yadav K L 2012 J. Alloys Compd. 511 149

    [38]

    Liu Y K, Yao Y P, Dong S N, Jiang T, Yang S W, Li X G 2012 Thin Solid Films 520 5775

  • [1]

    Bell A J 2008 J. Eur. Ceram. Soc. 28 1307

    [2]

    Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi R O, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur N D, Gaupp A, Abrudan R, Radu F, Barthlmy A, Bibes M 2011 Nat. Mater. 10 753

    [3]

    Xu Y, Zhang Z Y, Jin Z M, Pan Q F, Lin X, Ma G H, Cheng Z X 2014 Acta Phys. Sin. 63 117801 (in Chinese) [徐悦, 张泽宇, 金钻明, 潘群峰, 林贤, 马国宏, 程振祥 2014 物理学报 63 117801]

    [4]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [5]

    Lebeugle D, Colson D, Forget A, Viret M, Bataille A M, Gukasov A 2008 Phys. Rev. Lett. 100 227602

    [6]

    Annapu Reddy V, Pathak N, Nath R 2013 Solid State Commun. 171 40

    [7]

    Qi X D, Dho J, Tomov R, Blamire M G, MacManus-Driscoll J L {2005 Appl. Phys. Lett. 86 2903

    [8]

    Hwang J S, Cho J Y, Park S Y, Yoo Y J, Yoo P S, Lee B W, Lee Y P 2015 Appl. Phys. Lett. 106 062902

    [9]

    Costa L V, Deus R C, Foschini C R, Longo E, Cilense M, Simes A Z 2014 Mater. Chem. Phys. 144 476

    [10]

    Seidel J, Trassin M, Zhang Y, Maksymovych P, Uhlig T, Pan X 2014 Adv. Mater. 26 4376

    [11]

    Song G L, Su J, Zhang N, Chang F G {2015 Acta Phys. Sin. 64 088101 (in Chinese) [宋桂林, 苏健, 张娜, 常方高 2015 物理学报 64 088101]

    [12]

    Trassin M, Clarkson J D, Bowden S R, Liu J, Heron J T, Paull R J, Arenholz E, Pierce D T, Unguris J 2013 Phys. Rev. B 87 134426

    [13]

    Singamaneni S R, Prater J T, Nori S, Kumar D, Narayan J 2015 J. Appl. Phys. 117 17D908

    [14]

    Deng H L, Zhang M, Wei J Z, Chu S J, Du M Y, Yan H {2015 Solid-State Electron. 109 73

    [15]

    Li M, Ning M, Ma Y, Wu Q, Ong C K 2007 J. Phys. D 40 1603

    [16]

    Yang J C, Huang Y L, He Q, Chu Y H 2014 J. Appl. Phys. 116 066801

    [17]

    Ba H, Gajek M, Bibes M, Barthlmy A 2008 J. Phys.: Condens. Matter 20 434221

    [18]

    Yan F, Xing G Z, Li L 2014 Appl. Phys. Lett. 104 132904

    [19]

    Yin L H, Song W H, Jiao X L, Wu W B, Zhu X B, Sun Y P 2009 J. Phys. D: Appl. Phys. 42 205402

    [20]

    Yu P, Lee J S, Okamoto S, Rossell M D, Huijben M, Yang C H, Ramasse Q M 2010 Phys. Rev. Lett. 105 027201

    [21]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Spaldin N A 2003 Science 299 1721

    [22]

    Das R, Mandal K {2012 J. Magn. Magn. Mater. 324 1914

    [23]

    Wang D H, Goh W C, Ning M, Ong C K {2006 Appl. Phys. Lett. 88 2907

    [24]

    Yang C, Jiang J S, Qian F Z, Jiang D M, Wang C M, Zhang W G {2010 J. Alloys Compd. 507 30

    [25]

    Anderson P W 1950 Phys. Rev. 79 350

    [26]

    Rao S S, Prater J T, Wu F, Shelton C T, Maria J P, Narayan J 2013 Nano Lett. 13 5814

    [27]

    Singh S K, Ishiwara H, Maruyama K 2006 J. Appl. Phys. 100 064102

    [28]

    Wen X L, Chen Z, Lin X, Niu L W, Duan M M, Zhang Y J, Chen C L 2014 Chin. Phys. B 23 117703

    [29]

    Liu Y K, Yao Y P, Dong S N, Yang S W, Li X G 2012 Phys. Rev. B 86 075113

    [30]

    Majumdar S, Dijken S V {2013 J. Phys. D: Appl. Phys. 47 034010

    [31]

    Jin K J, Lu H B, Zhou Q L, Zhao K, Cheng B L, Chen Z H 2005 Phys. Rev. B 71 184428

    [32]

    Chen P, Xing D Y, Du Y W 2001 Phys. Rev. B 64 104402

    [33]

    Scott J F, Singh M K, Katiyar R S 2008 J. Phys. Condens. Matter 20 322203

    [34]

    Mandal P R, Nath T K 2014 J. Alloys Compd. 599 71

    [35]

    Ren P, Liu P, Xia B, Zou X, You L, Wang J L, Wang L 2012 AIP Adv. 2 022133

    [36]

    Singh H, Kumar A, Yadav K L {2011 Mater. Sci. Eng. B 176 542

    [37]

    Uniyal P, Yadav K L 2012 J. Alloys Compd. 511 149

    [38]

    Liu Y K, Yao Y P, Dong S N, Jiang T, Yang S W, Li X G 2012 Thin Solid Films 520 5775

  • [1] Hu Ju-Gang, Jia Zhen-Yu, Li Shao-Chun. Electron transport property of epitaixial bilayer graphene on SiC substrate. Acta Physica Sinica, 2022, 71(12): 127204. doi: 10.7498/aps.71.20220062
    [2] Li Jing, Ding Shuai-Shuai, Hu Wen-Ping. Research of spinterface in organic spintronic devices. Acta Physica Sinica, 2022, 71(6): 067201. doi: 10.7498/aps.71.20211786
    [3] Zhang Yi-Wei, Song Heng-Bo, Li Xiao-Yan, Sun Li, Liu Xiao-Ying, Kou Zhao-Xia, Zhang Dong, Fei Hong-Yang, Zhao Zhi-Bin, Zhai Ya. Influence of Cr interlayer with different thickness on transition of magnetoresistance effect of Gd/FeCo thin films. Acta Physica Sinica, 2022, 71(21): 217501. doi: 10.7498/aps.71.20220472
    [4] Xi Jian-Feng, Li Bao-He, Liu Dan, Li Xiong, Geng Ai-Cong, Li Xiao. Enhanced photovoltaic effect in LaAlO3/SrTiO3 interface. Acta Physica Sinica, 2021, 70(8): 086802. doi: 10.7498/aps.70.20201330
    [5] Chen Dong, Yu Ben-Hai. Dual control of magnetism in LaMnO3/BaTiO3 superlattice by epitaxial strain and ferroelectric polarization. Acta Physica Sinica, 2020, 69(22): 226301. doi: 10.7498/aps.69.20200839
    [6] An Ming, Dong Shuai. Charge-mediated magnetoelectricity: from ferroelectric field effect to charge-ordering ferroelectrics. Acta Physica Sinica, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [7] Zhou Long, Wang Xiao, Zhang Hui-Min, Shen Xu-Dong, Dong Shuai, Long You-Wen. High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure. Acta Physica Sinica, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [8] Wang Jian-Yuan, Bai Jian-Ying, Luo Bing-Cheng, Wang Shuan-Hu, Jin Ke-Xin, Chen Chang-Le. Magneto-induced polarization enhancement and magneto-dielectric properties in oxygen deficient La0.67Sr0.33MnO3-/BaTiO3 composite film. Acta Physica Sinica, 2018, 67(1): 017701. doi: 10.7498/aps.67.20172019
    [9] He Li-Min, Ji Yu, Lu Yi, Wu Hong-Ye, Zhang Xue-Feng, Zhao Jian-Jun. Magnetic and transport properties of layered perovskite manganites (La1-xEu x)4/3Sr5/3Mn2O7(x=0, 0.15). Acta Physica Sinica, 2014, 63(14): 147503. doi: 10.7498/aps.63.147503
    [10] Wang Mei-Na, Li Ying, Wang Tian-Xing, Liu Guo-Dong. Magnetic properties of multiferroic material DyMnO3 in orthorhombic structure. Acta Physica Sinica, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [11] Wang Wei, Zhou Wen-Zheng, Wei Shang-Jiang, Li Xiao-Juan, Chang Zhi-Gang, Lin Tie, Shang Li-Yan, Han Kui, Duan Jun-Xi, Tang Ning, Shen Bo, Chu Jun-Hao. Magneto-resistance for two-dimensional electron gas in GaN/AlxGa1-xN heterostructure. Acta Physica Sinica, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [12] Jia Lin-Nan, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Progress of memristor modulated by interfacial effect. Acta Physica Sinica, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [13] Huang Xiu-Feng, Pan Li-Qing, Li Chen-Xi, Wang Qiang, Sun Gang, Lu Kun-Quan. Vibrational dynamics of water confined in mesoporous silica under low temperature. Acta Physica Sinica, 2012, 61(13): 136801. doi: 10.7498/aps.61.136801
    [14] Xu Yong, Cai Jian-Wang. Effects of interfacial Ru, Pd, Ag, and Au insertion layers on the anisotropic magnetoresistance in Ta/NiFe/Ta trilayers. Acta Physica Sinica, 2011, 60(11): 117308. doi: 10.7498/aps.60.117308
    [15] Qin Wei, Zhang Yu-Bin, Xie Shi-Jie. Study on the temperature effect of magnetoresistance in organic device Co/Alq3/La1-xSrxMnO3(LSMO). Acta Physica Sinica, 2010, 59(5): 3494-3498. doi: 10.7498/aps.59.3494
    [16] Jiang Kuo. Mechanism of magnetoresistance impacted by Co doped in La0.8Sr0.2MnO3 ferromagnetic metallic. Acta Physica Sinica, 2010, 59(4): 2801-2807. doi: 10.7498/aps.59.2801
    [17] Ma Jing, Shi Zhan, Lin Yuan-Hua, Nan Ce-Wen. Magnetoelectric properties of multiferroic composites with pseudo 2-2 type multilayered structure. Acta Physica Sinica, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [18] Peng Xian-De, Zhu Tao, Wang Fang-Wei. High temperature annealing treatment on Co doped ZnO bulks. Acta Physica Sinica, 2009, 58(5): 3274-3279. doi: 10.7498/aps.58.3274
    [19] Xu Xiao-Yong, Qian Li-Jie, Hu Jing-Guo. Magnetoresistance induced by the stress fieldin ferromagnetic multilayer. Acta Physica Sinica, 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [20] TONG LIU-NIU, HE XIAN-MEI, LU MU. EFFECT OF ANNEALING ON THE MAGNETIC PROPERTIES OF Ni80Co20 THIN FILMS WITH IMPURITY LAYERS. Acta Physica Sinica, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
Metrics
  • Abstract views:  5539
  • PDF Downloads:  207
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2016
  • Accepted Date:  18 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回