Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magneto-induced polarization enhancement and magneto-dielectric properties in oxygen deficient La0.67Sr0.33MnO3-/BaTiO3 composite film

Wang Jian-Yuan Bai Jian-Ying Luo Bing-Cheng Wang Shuan-Hu Jin Ke-Xin Chen Chang-Le

Citation:

Magneto-induced polarization enhancement and magneto-dielectric properties in oxygen deficient La0.67Sr0.33MnO3-/BaTiO3 composite film

Wang Jian-Yuan, Bai Jian-Ying, Luo Bing-Cheng, Wang Shuan-Hu, Jin Ke-Xin, Chen Chang-Le
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetoelectric composite film is an important type of multiferroic materials, which is usually composed of typical ferromagnetic and ferroelectric materials. For the ferroelectric layer, BaTiO3 (BTO) attracts much attention due to its lead-free characteristic. For the ferromagnetic layer, doped manganite (R1-xAxMnO3) has been a good candidate for designing the advanced multiferroic films. Multiple interactions among the freedom degrees of charge, orbital, spin and lattice inside the doped manganite bring many additional properties into the manganite based composite films. At present, most of researches of manganite/BTO focus on the stoichiometric oxygen ion in manganite. Considering the fact that the oxygen deficiency can remarkably adjust the properties of manganite itself and relevant heterostructure by the interface effect, abnormal magnetoelectric properties are expected in an oxygen deficient manganite/BTO composite film. In this work, a composite film composed of BTO and oxygen deficient La0.67Sr0.33MnO3- (LSMO) is deposited on LaAlO3 001 substrate by the pulsed laser deposition method, and the effects of magnetic field on the properties of polarization and dielectric in a temperature range of 20-300 K are investigated. The X-ray diffraction pattern reveals good epitaxial growth of this bilayer film. The upper LSMO film exhibits semiconductive characteristic (dR/dT 0) in a temperature range of 20-300 K. Magnetization curves indicate that the LSMO keeps ferromagnetic state without any magnetic phase transition in this temperature range. When applying a magnetic fields of 0.8 T, the resistance in LSMO is observed to decrease. The changing rate MR=|R0.8 T-R0 T|/R0 T decreases from 45.28% at 30 K to 0.15% at 300 K. This composite film exhibits remarkable temperature-dependent magneto-induced ferroelectric and dielectric change. It is found that the remanent polarization (Pr) and coercive electric field (Ec) are enhanced by the 0.8 T magnetic field. The maximum changing rates of Pr and Ec are 111.9% and 89.6% at the temperatures of 40 K and 60 K, respectively. The magnetic field enhances the dielectric constant , but suppresses the dielectric loss tan . The maximum changing rates of and tan both occur at 60 K with the values of 300% and 50.9%. The temperature at which appear the maximum magneto-induced relative changes of polarization and dielectric parameters is accordant with the temperature at which occurs the peak value of magnetoresistance, which indicates a charge-based coupling in this heterojunction. A potential mechanism is that the magnetic field promotes the degree of parallelism of local spin magnetic moment of Mn ion, and produces an indirect effect on BTO layer by the spin-obital coupling and interface effect. Our findings make the oxygen deficient LSMO/BTO heterojunction promising for the design of multiferroic devices.
      Corresponding author: Wang Jian-Yuan, wangjy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51402240, 51471134, 11604265) and the Ao Xiang Xin Xing Foundation in NWPU, China.
    [1]

    Li Q, Wang D H, Cao Q Q, Du Y W 2017 Chin. Phys.. 26 097502

    [2]

    Wang J Y, Luo B C, Wang S H, Xing H, Zhai W 2018 Mater. Lett. 212 151

    [3]

    Wang J Y, Liu G, Sando D, Nagarajan V, Seidel J 2017 Appl. Phys. Lett. 111 092902

    [4]

    Li Y C, Zhou H, Pan D F, Zhang H, Wan J G 2015 Acta Phys. Sin. 64 099701(in Chinese) [李永超, 周航, 潘丹峰, 张浩, 万建国 2015 物理学报 64 099701]

    [5]

    Liu E H, Chen Z, Wen X L, Chen C L 2015 Acta Phys. Sin. 64 117701(in Chinese) [刘恩华, 陈钊, 温晓莉, 陈长乐 2015 物理学报 64 117701]

    [6]

    He H C, Wang J, Zhou J P, Nan C W 2007 Adv. Funct. Mater. 17 1333

    [7]

    Geprgs S, Mannix D, Opel M 2013 Phys. Rev.. 88 054412

    [8]

    Zhou J P, He H C, Shi Z, Nan C W 2006 Appl. Phys. Lett. 88 013111

    [9]

    Chopdekar R V, Suzuki Y 2006 Appl. Phys. Lett. 89 182506

    [10]

    Deng C, Zhang Y, Ma J, Lin Y, Wen C W 2007 J. Appl. Phys. 102 074114

    [11]

    Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi R O, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur N D, Gaupp A, Abrudan R, Radu F, Barthlmy A, Bibes M 2011 Nat. Mater. 10 753

    [12]

    Jedrecy N, von Bardeleben H J, Badjeck V, Demaille D, Stanescu D, Magnan H, Barbier A 2013 Phys. Rev.. 88 121409

    [13]

    Liu J M, Wang K F 2005 Prog. Phys. 25 82(in Chinese) [刘俊明, 王克锋 2005 物理学进展 25 82]

    [14]

    Murugavel P, Padhan P, Prellier W 2004 Appl. Phys. Lett. 85 4992

    [15]

    Singh M P, Prellier W, Mechin L, Raveau B 2006 Appl. Phys. Lett. 88 012903

    [16]

    Lee Y P, Park S Y, Hyun Y H, Kim J B, Prokhorov V G, Komashko V A, Svetchnikov V L 2006 Phys. Rev.. 73 224413

    [17]

    Wang C C, He M, Yang F, Wen J, Liu G Z, Lu H B 2007 Appl. Phys. Lett. 90 192904

    [18]

    Li T X, Zhang M, Hua Z, Yan H 2001 Solid. State. Commun. 151 1659

    [19]

    Li T X, Zhang M, Yu F J, Hu Z, Li K S, Yu D B, Yan H 2012 J. Phys. D: Appl. Phys. 45 085002

    [20]

    Fiebig M 2005 J. Phys.. 38 R123

    [21]

    Thiele C, Dorr K, Bilani O, Rodel J, Schultz L 2007 Phys. Rev.. 75 054408

    [22]

    Molegraaf H J A, Hoffman J, Vaz C A F, Gariglio S, van der Marel D, Ahn C H, Triscone J M 2009 Adv. Mater. 21 3470

  • [1]

    Li Q, Wang D H, Cao Q Q, Du Y W 2017 Chin. Phys.. 26 097502

    [2]

    Wang J Y, Luo B C, Wang S H, Xing H, Zhai W 2018 Mater. Lett. 212 151

    [3]

    Wang J Y, Liu G, Sando D, Nagarajan V, Seidel J 2017 Appl. Phys. Lett. 111 092902

    [4]

    Li Y C, Zhou H, Pan D F, Zhang H, Wan J G 2015 Acta Phys. Sin. 64 099701(in Chinese) [李永超, 周航, 潘丹峰, 张浩, 万建国 2015 物理学报 64 099701]

    [5]

    Liu E H, Chen Z, Wen X L, Chen C L 2015 Acta Phys. Sin. 64 117701(in Chinese) [刘恩华, 陈钊, 温晓莉, 陈长乐 2015 物理学报 64 117701]

    [6]

    He H C, Wang J, Zhou J P, Nan C W 2007 Adv. Funct. Mater. 17 1333

    [7]

    Geprgs S, Mannix D, Opel M 2013 Phys. Rev.. 88 054412

    [8]

    Zhou J P, He H C, Shi Z, Nan C W 2006 Appl. Phys. Lett. 88 013111

    [9]

    Chopdekar R V, Suzuki Y 2006 Appl. Phys. Lett. 89 182506

    [10]

    Deng C, Zhang Y, Ma J, Lin Y, Wen C W 2007 J. Appl. Phys. 102 074114

    [11]

    Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi R O, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur N D, Gaupp A, Abrudan R, Radu F, Barthlmy A, Bibes M 2011 Nat. Mater. 10 753

    [12]

    Jedrecy N, von Bardeleben H J, Badjeck V, Demaille D, Stanescu D, Magnan H, Barbier A 2013 Phys. Rev.. 88 121409

    [13]

    Liu J M, Wang K F 2005 Prog. Phys. 25 82(in Chinese) [刘俊明, 王克锋 2005 物理学进展 25 82]

    [14]

    Murugavel P, Padhan P, Prellier W 2004 Appl. Phys. Lett. 85 4992

    [15]

    Singh M P, Prellier W, Mechin L, Raveau B 2006 Appl. Phys. Lett. 88 012903

    [16]

    Lee Y P, Park S Y, Hyun Y H, Kim J B, Prokhorov V G, Komashko V A, Svetchnikov V L 2006 Phys. Rev.. 73 224413

    [17]

    Wang C C, He M, Yang F, Wen J, Liu G Z, Lu H B 2007 Appl. Phys. Lett. 90 192904

    [18]

    Li T X, Zhang M, Hua Z, Yan H 2001 Solid. State. Commun. 151 1659

    [19]

    Li T X, Zhang M, Yu F J, Hu Z, Li K S, Yu D B, Yan H 2012 J. Phys. D: Appl. Phys. 45 085002

    [20]

    Fiebig M 2005 J. Phys.. 38 R123

    [21]

    Thiele C, Dorr K, Bilani O, Rodel J, Schultz L 2007 Phys. Rev.. 75 054408

    [22]

    Molegraaf H J A, Hoffman J, Vaz C A F, Gariglio S, van der Marel D, Ahn C H, Triscone J M 2009 Adv. Mater. 21 3470

  • [1] Ji Hui-Hui, Gao Xing-Guo, Li Zhi-Lan. Dimensionality driven exchange coupling effect in cuprate-manganite superlattices. Acta Physica Sinica, 2024, 73(21): 216102. doi: 10.7498/aps.73.20240849
    [2] Wang Zhe, Xu Jie-Min, Wang Wen-Jun, Li He-Xuan, Zou You-Ming, Yu Lu, Qu Zhe. Electron spin resonance study of spin fluctuation in multiferroic MnSb2O6. Acta Physica Sinica, 2022, 71(1): 017501. doi: 10.7498/aps.71.20211465
    [3] Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Physica Sinica, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [4] Zhai Xiao-Fang, Yun Yu, Meng De-Chao, Cui Zhang-Zhang, Huang Hao-Liang, Wang Jian-Lin, Lu Ya-Lin. Research progress of multiferroicity in Bi-layered oxide single-crystalline thin films. Acta Physica Sinica, 2018, 67(15): 157702. doi: 10.7498/aps.67.20181159
    [5] Chen Shun-Sheng, Xiong Liang-Bin, Yang Chang-Ping. Interfacial trap dependent resistance switching effect in Nd0.7Sr0.3MnO3 ceramic. Acta Physica Sinica, 2016, 65(8): 087302. doi: 10.7498/aps.65.087302
    [6] Liu En-Hua, Chen Zhao, Wen Xiao-Li, Chen Chang-Le. Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film. Acta Physica Sinica, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [7] Song Gui-Lin, Su Jian, Zhang Na, Chang Fang-Gao. Dielectric properties and high temperature magnetic behavior on multiferroics Bi1-xCaxFeO3 ceramics. Acta Physica Sinica, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [8] Chen Shun-Sheng, Yang Chang-Ping, Kan Zhi-Lan, Medvedeva I V, Marchenkov S. Effect of thermal-pressure treatment on magnetoelectric transport in Nd0.7Sr0.3MnO3 ceramics. Acta Physica Sinica, 2012, 61(18): 186202. doi: 10.7498/aps.61.186202
    [9] Chen Shun-Sheng, Yang Chang-Ping, Xiao Hai-Bo, Xu Ling-Fang, Ma Chang. Effect of doping concentration on electric-pulse- induced resistance in Nd1-xSrxMnO3 ceramics. Acta Physica Sinica, 2012, 61(14): 147301. doi: 10.7498/aps.61.147301
    [10] Yi Ding, Qin Wei, Xie Shi-Jie. Investigation of polarons in perovskite manganites. Acta Physica Sinica, 2012, 61(20): 207101. doi: 10.7498/aps.61.207101
    [11] Hu Ni, Liu Yong, Cheng Li, Shi Jing, Xiong Rui. Mn-site Fe/Cr doping effects in charge-ordered antiferromagnetic manganite La0.4Ca0.6MnO3. Acta Physica Sinica, 2011, 60(1): 017503. doi: 10.7498/aps.60.017503
    [12] Yue Ting, He Hao, Zhang Xing, Li Guang. Electronic density distribution of La0.55Ca0.45MnO3 revealed by temperature-dependent X-ray diffraction. Acta Physica Sinica, 2011, 60(5): 057501. doi: 10.7498/aps.60.057501
    [13] Jiang Ping, Wang Shun-Li, Tang Wei-Hua, Zhu Hui-Wen, Mao Ling-Feng. Conduction mechanisms in (La0.7Sr0.3MnO3)m(BiFeO3)n superlattice. Acta Physica Sinica, 2010, 59(8): 5710-5714. doi: 10.7498/aps.59.5710
    [14] Jin Ke-Xin, Zhao Sheng-Gui, Chen Chang-Le. Photoinduced effect in Cu doping La0.67Sr0.33Cux Mn1-xO3 thin films. Acta Physica Sinica, 2009, 58(7): 4953-4957. doi: 10.7498/aps.58.4953
    [15] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Ge Cun-Wang. Magnetoelectric coupling and magnetoelectric properties of single-phase ABO3 type multiferroic materials. Acta Physica Sinica, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [16] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Jiang Xue-Fan, Luo Li-Jin. Electric-field-induced magnetization in 1-3 type multiferroic nanocomposite thin film. Acta Physica Sinica, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [17] Zhang Cheng-Guo, Zhang Xiao-Zhong. Ca clustering and its stability in La1-xCaxMnO3(x≤1/3). Acta Physica Sinica, 2008, 57(11): 7126-7131. doi: 10.7498/aps.57.7126
    [18] Yang Xin-Sheng, Zhao Yong. The study of ZnO varistor doped with ferromagnetic manganese oxide. Acta Physica Sinica, 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [19] Kang Bao-Juan, Cao Shi-Xun, Wang Xin-Yan, Li Ling-Wei, Li Wen-Feng, Liu Fen, Cao Gui-Xin, Yu Li-Ming, Jing Chao, Zhang Jin-Cang. Study on magnetic transition behavior for (Pr1-yNdy)2/3Sr1/3MnO3 system under superposed fields. Acta Physica Sinica, 2005, 54(2): 902-906. doi: 10.7498/aps.54.902
    [20] Shu Zheng-Huang, Dong Jin-Ming. Affect of the orbital ordering in half-doped manganites on their optical propert ies. Acta Physica Sinica, 2003, 52(11): 2918-2922. doi: 10.7498/aps.52.2918
Metrics
  • Abstract views:  6286
  • PDF Downloads:  202
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2017
  • Accepted Date:  19 November 2017
  • Published Online:  05 January 2018

/

返回文章
返回