Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zero co-phasing reference calibration method based on dispersed interferogram for segmented mirror telescope

Yan Zhao-Jun Chen Xin-Yang Zheng Li-Xin Ding Yuan-Yuan Zhu Neng-Hong

Citation:

Zero co-phasing reference calibration method based on dispersed interferogram for segmented mirror telescope

Yan Zhao-Jun, Chen Xin-Yang, Zheng Li-Xin, Ding Yuan-Yuan, Zhu Neng-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Astronomical telescopes with increasingly large apertures are required to upgrade the limit of diffraction and collect the light efficiently for the purpose of observing fainter and more remote objects with higher angular resolution. However, it is universally believed that traditional techniques of manufacturing, polishing and measuring large glass mirrors will soon face some practical challenges. Therefore, 10-m class or larger ground-based telescopes will need to employ arrays of several smaller segments to assemble into a large primary mirror. For a telescope with segmented mirrors, the piston errors between segments must be adjusted to nearly zero according to the requirements in order to be integrated into a single optical surface, which is known as co-phasing. One of the current co-phasing techniques, which has been successfully applied to Keck telescopes, employs an integration of edge sensors to detect the mirror shapes in real time with an optical phasing sensor to offer zero references for these sensors regularly. Another technique is demonstrated by use of a pyramid wavefront sensor (PWFS) to align and co-phase segmented mirrors in an active control close-loop with a single measurement. The co-phased best flat positions of segments are used as the zero references in order to measure the interaction matrix between the PWFS and the segmented mirrors. So it must be addressed that how the zero co-phasing reference is calibrated with high precision in a large capture range on the issues of co-phasing segmented mirrors. The current methods either lack accuracies, or just measure piston errors correctly in a small range. In order to solve the problem, a zero co-phasing reference calibration method based on dispersed interferogram is proposed. Specifically, the idea of the method is to define an appropriate cost function which is used to evaluate the piston errors between segments. Then it will be easy to determine the zero co-phasing reference position while all the cost function values are calculated based on the dispersed interferogram data with different piston errors inside the capture range. The proposed cost function is defined as the sum of the ratios of the second peak to the third peak of each of the columns of the two-dimensional dispersed interferogram, whose intensity distribution is along the dispersion direction. The precision and dynamic range of the method are analyzed theoretically and studied by simulations. Furthermore, the optical experiment is set up to demonstrate the efficacy of the method. In the experiment a scanning procedure is applied to one mirror and the dispersed interferograms between two mirrors with different piston errors are obtained. And then, the cost functions of these dispersed interferograms are computed through which the zero co-phasing reference position is located. The experimental results prove that the zero co-phasing reference between two mirrors can be calibrated within an accuracy of about 10 nm by making use of the proposed method. In addition, the novel method solves the problem of 2 ambiguity. Besides its sub-millimeter level wide capture range, this new co-phasing detecting method provides a helpful reference for relevant studies.
      Corresponding author: Yan Zhao-Jun, zhaojunyan@shao.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11403079).
    [1]

    List of largest optical reflecting telescopes. https://en.wikipedia.org/wiki/List_of_largest_optical_reflecting_telescopes 2016-06-13

    [2]

    van Dam M A, Le Mignant D, Macintosh B A 2004 Appl. Opt. 43 5458

    [3]

    Shi J R 2016 Chin. Sci. Bull. 61 1330(in Chinese) [施建荣2016科学通报61 1330]

    [4]

    Nelson J, Sanders G H 2008 SPIE 7012 70121A

    [5]

    Johns M, McCarthy P, Raybould K, Bouchez A, Farahani A, Filgueira J, Jacoby G, Shectman S, Sheehan M 2012 SPIE 8444 84441H

    [6]

    Schumacher A, Devaney N, Montoya L 2002 Appl. Opt. 41 1297

    [7]

    Chanan G, Troy M, Dekens F, Michaels S, Nelson J, Mast T, Kirkman D 1998 Appl. Opt. 37 140

    [8]

    Chanan G, Ohara C, Troy M 2000 Appl. Opt. 39 4706

    [9]

    Chanan G, Pintó A 2004 Appl. Opt. 43 3279

    [10]

    Shi F, Chanan G, Ohara C, Troy M, Redding D C 2004 Appl. Opt. 43 4474

    [11]

    Shi F, Redding D C, Green J J, Ohara C 2004 SPIE 5487897

    [12]

    Shi F, Redding D C, Bowers C W, Lowman A E, Basinger S A, Norton T A, Peter P, Pamela S D, Mark E W, Ray B 2000 SPIE 4013 757

    [13]

    Zhang Y, Zhang L, Liu G R, Wang Y F, Zhang Y J, Zeng Y Z, Li Y P 2011 Acta Opt. Sin. 31 0212004(in Chinese) [张勇, 张靓, 刘根荣, 王跃飞, 张亚俊, 曾裔中, 李烨平2011光学学报31 0212004]

    [14]

    Luo Q, Huang L H, Gu N T, Li F, Rao C H 2012 Acta Phys. Sin. 61 069501 (in Chinese) [罗群,黄林海,顾乃庭,李斐,饶长辉2012物理学报61 069501]

    [15]

    Esposito S, Pinna E, Puglisi A, Tozzi A, Stefanini P 2005 Opt. Lett. 30 2572

    [16]

    Liu Z, Wang S Q, Rao C H 2012 Acta Phys. Sin. 61 039501 (in Chinese) [刘政, 王胜千, 饶长辉2012物理学报61 039501]

    [17]

    Liu Z, Wang S Q, Rao C H 2012 Chin. Phys. B 21 069501

    [18]

    Yan Z J, Chen X Y, Yang P Q, Zhou D, Zheng L X, Zhu N H 2015 Acta Phys. Sin. 64 149501 (in Chinese) [颜召军, 陈欣扬, 杨朋千, 周丹, 郑立新, 朱能鸿2015物理学报64 149501]

    [19]

    Hénault F 2009 J. Opt. A: Pure Appl. Opt. 11 125503

  • [1]

    List of largest optical reflecting telescopes. https://en.wikipedia.org/wiki/List_of_largest_optical_reflecting_telescopes 2016-06-13

    [2]

    van Dam M A, Le Mignant D, Macintosh B A 2004 Appl. Opt. 43 5458

    [3]

    Shi J R 2016 Chin. Sci. Bull. 61 1330(in Chinese) [施建荣2016科学通报61 1330]

    [4]

    Nelson J, Sanders G H 2008 SPIE 7012 70121A

    [5]

    Johns M, McCarthy P, Raybould K, Bouchez A, Farahani A, Filgueira J, Jacoby G, Shectman S, Sheehan M 2012 SPIE 8444 84441H

    [6]

    Schumacher A, Devaney N, Montoya L 2002 Appl. Opt. 41 1297

    [7]

    Chanan G, Troy M, Dekens F, Michaels S, Nelson J, Mast T, Kirkman D 1998 Appl. Opt. 37 140

    [8]

    Chanan G, Ohara C, Troy M 2000 Appl. Opt. 39 4706

    [9]

    Chanan G, Pintó A 2004 Appl. Opt. 43 3279

    [10]

    Shi F, Chanan G, Ohara C, Troy M, Redding D C 2004 Appl. Opt. 43 4474

    [11]

    Shi F, Redding D C, Green J J, Ohara C 2004 SPIE 5487897

    [12]

    Shi F, Redding D C, Bowers C W, Lowman A E, Basinger S A, Norton T A, Peter P, Pamela S D, Mark E W, Ray B 2000 SPIE 4013 757

    [13]

    Zhang Y, Zhang L, Liu G R, Wang Y F, Zhang Y J, Zeng Y Z, Li Y P 2011 Acta Opt. Sin. 31 0212004(in Chinese) [张勇, 张靓, 刘根荣, 王跃飞, 张亚俊, 曾裔中, 李烨平2011光学学报31 0212004]

    [14]

    Luo Q, Huang L H, Gu N T, Li F, Rao C H 2012 Acta Phys. Sin. 61 069501 (in Chinese) [罗群,黄林海,顾乃庭,李斐,饶长辉2012物理学报61 069501]

    [15]

    Esposito S, Pinna E, Puglisi A, Tozzi A, Stefanini P 2005 Opt. Lett. 30 2572

    [16]

    Liu Z, Wang S Q, Rao C H 2012 Acta Phys. Sin. 61 039501 (in Chinese) [刘政, 王胜千, 饶长辉2012物理学报61 039501]

    [17]

    Liu Z, Wang S Q, Rao C H 2012 Chin. Phys. B 21 069501

    [18]

    Yan Z J, Chen X Y, Yang P Q, Zhou D, Zheng L X, Zhu N H 2015 Acta Phys. Sin. 64 149501 (in Chinese) [颜召军, 陈欣扬, 杨朋千, 周丹, 郑立新, 朱能鸿2015物理学报64 149501]

    [19]

    Hénault F 2009 J. Opt. A: Pure Appl. Opt. 11 125503

  • [1] Zhao Wei-Rui, Wang Hao, Zhang Lu, Zhao Yue-Jin, Chu Chun-Yan. High-precision co-phase method for segments based on a convolutional neural network. Acta Physica Sinica, 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [2] Qiang Peng-Fei, Sheng Li-Zhi, Li Lin-Sen, Yan Yong-Qing, Liu Zhe, Zhou Xiao-Hong. Optical design of X-ray focusing telescope. Acta Physica Sinica, 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [3] Dong Lei, Lu Zhen-Wu, Liu Xin-Yue, Li Zheng-Wei. Performance optimization of three down-sampling imaging strategies and their comparison with the conventional Fourier telescope. Acta Physica Sinica, 2019, 68(7): 074203. doi: 10.7498/aps.68.20181801
    [4] Zhu-Yue, Zhang Zi-Liang, Yang Yan-Ji, Xue Rong-Feng, Cui Wei-Wei, Lu Bo, Wang Juan, Chen Tian-Xiang, Wang Yu-Sa, Li Wei, Han Da-Wei, Huo Jia, Hu Wei, Li Mao-Shun, Zhang Yi, Zhu Yu-Xuan, Liu Miao, Zhao Xiao-Fan, Chen Yong. Quantum efficiency calibration for low energy detector in hard X-ray modulation telescope satellite. Acta Physica Sinica, 2017, 66(11): 112901. doi: 10.7498/aps.66.112901
    [5] Zhang Yu, Luo Xiu-Juan, Cao Bei, Chen Ming-Lai, Liu Hui, Xia Ai-Li, Lan Fu-Yang. Analysis of the redundancy of Fourier telescopy transmitter array and its redundancy-strehl ratio-target texture distribution characteristic. Acta Physica Sinica, 2016, 65(11): 114201. doi: 10.7498/aps.65.114201
    [6] Yu Shu-Hai, Dong Lei, Liu Xin-Yue, Ling Jian-Yong. Analysis on reconstruction of virtual images of Fourier telescopy. Acta Physica Sinica, 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [7] Yan Zhao-Jun, Chen Xin-Yang, Yang Peng-Qian, Zhou Dan, Zheng Li-Xin, Zhu Neng-Hong. Co-phasing detecting method based on grating dispersed fringe for Fizeau optical interferometric telescope. Acta Physica Sinica, 2015, 64(14): 149501. doi: 10.7498/aps.64.149501
    [8] Liao Hong-Yu, Ma Xiao-Yu, Guo You-Ming, Rao Chang-Hui, Wei Kai. Analysis of tracking error of telescope based on AR-search-iteration algorithm. Acta Physica Sinica, 2014, 63(17): 179501. doi: 10.7498/aps.63.179501
    [9] Luo Qun, Huang Lin-Hai, Gu Nai-Ting, Li Fei, Rao Chang-Hui. Experimental study on phase diversity wavefront sensing technology in piston error detection. Acta Physica Sinica, 2012, 61(6): 069501. doi: 10.7498/aps.61.069501
    [10] Hu Yao, Wang Xiao, Zhu Qi-Hua. Comparison of grating mosaic error tolerance among three types of laser pulse compressor configurations. Acta Physica Sinica, 2011, 60(12): 124205. doi: 10.7498/aps.60.124205
    [11] Liu Zheng, Wang Sheng-Qian, Huang Lin-Hai, Rao Chang-Hui. Analysis of comprehensive effects of piston error and sub-aperture aberrations on the image quality of sparse-optical-synthetic-aperture system. Acta Physica Sinica, 2011, 60(10): 100702. doi: 10.7498/aps.60.100702
    [12] Liu Ning, Zhang Chun-Min, Wang Jin-Chan, Mu Ting-Kui. The theoretical measurement error of a novel static polarization wind imaging interferometer. Acta Physica Sinica, 2010, 59(6): 4369-4379. doi: 10.7498/aps.59.4369
    [13] Zhao Yang-Ying, Han Hai-Nian, Teng Hao, Wei Zhi-Yi. Generation of femtoseond Ti:sapphire laser at 10MHz repetition rate by extending laser cavity with a telescope. Acta Physica Sinica, 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [14] Zhao Bao-Yin, Lü Bai-Da. A new synthesis method for synthesizing on-axis flat-topped beams by using a defocusing telescope system. Acta Physica Sinica, 2008, 57(5): 2919-2924. doi: 10.7498/aps.57.2919
    [15] Zhou Bin-Bin, Zhang Wei, Zhan Min-Jie, Wei Zhi-Yi. Self-starting mode-locked Cr4+:YAG laser with Gires-Tournois interferometer mirror for dispersion compensation. Acta Physica Sinica, 2008, 57(3): 1742-1745. doi: 10.7498/aps.57.1742
    [16] Zuo Yan-Lei, Wei Xiao-Feng, Zhu Qi-Hua, Liu Hong-Jie, Wang Xiao, Huang Zheng, Guo Yi, Ying Chun-Tong. Theory of array-grating compressor based on in-pair compensation of errors. Acta Physica Sinica, 2007, 56(9): 5227-5232. doi: 10.7498/aps.56.5227
    [17] Han Ying-Kui, Wang Qing-Yue, Zhang Zhi-Gang, Zhang Wei-Li, Chai Lu, Yuan Xiao-Dong, Huang Xiao-Jun. Effect of a folded reflecting telescope on the pulse front in the femtosecond ch irped pulse amplification system. Acta Physica Sinica, 2005, 54(4): 1613-1618. doi: 10.7498/aps.54.1613
    [18] Xu Guang, Qian Lie-Jia, Wang Tao, Zhu He-Yuan, Fan Dian-Yuan. Time telescope for the expanding of ultrashort pulses. Acta Physica Sinica, 2004, 53(1): 93-98. doi: 10.7498/aps.53.93
    [19] Liu Yong-Jun, Cai Lu, Wang Qing-Yue, Zhang Zhi-Gang. . Acta Physica Sinica, 2002, 51(6): 1291-1294. doi: 10.7498/aps.51.1291
    [20] . Acta Physica Sinica, 1966, 22(8): 855-858. doi: 10.7498/aps.22.855
Metrics
  • Abstract views:  5819
  • PDF Downloads:  168
  • Cited By: 0
Publishing process
  • Received Date:  06 June 2016
  • Accepted Date:  15 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回