Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum efficiency calibration for low energy detector in hard X-ray modulation telescope satellite

Zhu-Yue Zhang Zi-Liang Yang Yan-Ji Xue Rong-Feng Cui Wei-Wei Lu Bo Wang Juan Chen Tian-Xiang Wang Yu-Sa Li Wei Han Da-Wei Huo Jia Hu Wei Li Mao-Shun Zhang Yi Zhu Yu-Xuan Liu Miao Zhao Xiao-Fan Chen Yong

Citation:

Quantum efficiency calibration for low energy detector in hard X-ray modulation telescope satellite

Zhu-Yue, Zhang Zi-Liang, Yang Yan-Ji, Xue Rong-Feng, Cui Wei-Wei, Lu Bo, Wang Juan, Chen Tian-Xiang, Wang Yu-Sa, Li Wei, Han Da-Wei, Huo Jia, Hu Wei, Li Mao-Shun, Zhang Yi, Zhu Yu-Xuan, Liu Miao, Zhao Xiao-Fan, Chen Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Low energy X-ray telescope, working over 0.7-15 keV energy band, is one of the main payloads in the hard X-ray modulation telescope satellite. The primary scientific objectives are to survey large sky area to investigate galactic X-ray transient sources as well as the cosmic X-ray background, and to observe X-ray binaries or black holes for studying the dynamics and emission mechanism in strong gravitational or magnetic field. The detector of low energy X-ray telescope is CCD236, a new generation of swept charge device, which has good time and energy resolution. Quantum efficiency (QE) of the detector has a crucial influence on X-ray spectrum fitting and absolute luminosity calculation. To provide valuable scientific data, QE should be calibrated in detail. In this paper, QE calibration is accomplished with respect to a silicon drift detector (SDD), using an Fe-55 radioactive source, at energy points Mn-Kα (5.899 keV) and Mn-Kβ (6.497 keV). The energies of Mn-Kα and Mn-Kβ are near that of iron-K, which is an important line in X-ray observation. Additionally, Mn-Kα and Mn-Kβ X-ray will partially pass through the depletion region of CCD236, and these energy points can be used to measure the depletion thickness. This experiment is set up in a vacuum cooling chamber. The X-ray source perpendicularly illuminates SDD and CCD236 through a small hole, whose area is far less than those of two detectors; therefore, QE measurements are irrelevant to neither the distance nor the azimuth angle between the X-ray source and the detector. For CCD236, split events should be corrected. Energy spectra of SDD and CCD236 are fitted with two Gaussian distributions, respectively, to obtain peak positions and standard variations of Mn-Kα and Mn-Kβ. With known structure of SDD, the QE of CCD236 can be calculated. QE values at Mn-Kα and Mn-Kβ are 71% and 62%, respectively. QE and temperature are uncorrelated with each other in a temperature range from -95 ℃ to -30 ℃. According to the specific structure of CCD236 and the measured QE, without considering the effect of channel stop, the best-fit thickness of depletion region is obtained to be 38 μm. When CCD236 is applied with different driving or substrate voltages, no obvious variation of QE is observed. It indicates that the thickness values of depletion region with high and low level voltages are equal. Furthermore, it shows that working CCD236 is deep depleted, and the thickness of depletion region will not change because it reaches its maximum, the edge of epitaxial layer and substrate layer.
      Corresponding author: Chen Yong, ychen@ihep.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403024) and the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No. KZCX2-EW-J01).
    [1]

    Li T P, Wu M 2008 Physics 37 648 (in Chinese) [李惕碚, 吴枚 2008 物理 37 648]

    [2]

    Lu F J, Xu Y P, Zhang F, Liu H W 2016 Mod. Phys. 4 4 (in Chinese) [卢方军, 徐玉朋, 张帆, 刘红薇 2016 现代物理知识 4 4]

    [3]

    Chen Y, Cui W W 2016 Mod. Phys. 4 25 (in Chinese) [陈勇, 崔苇苇 2016 现代物理知识 4 25]

    [4]

    Holland A, Pool P 2008 Proceedings of SPIE: High Energy, Optical, and Infrared Detectors for Astronomy Ⅲ Marseille, June 23-27, 2008 p7021

    [5]

    Wang Y S, Chen Y, Xu Y P, Wang J, Cui W W, Li W, Han D W, Zhang Z L, Chen T X, Li C K 2010 Chin. Phys. C 34 1812

    [6]

    Yang Y J, Lu J B, Wang Y S, Chen Y, Xu Y P, Cui W W, Li W, Li Z W, Li M S, Liu X Y 2014 Chin. Phys. C 38 60

    [7]

    Murray N, Holland A, Smith D, Gow J, Pool P, Burt D 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 604 180

    [8]

    Yang Y J 2014 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨彦佶 2014 博士学位论文 (长春: 吉林大学)]

    [9]

    Smith P, Gow J, Murray N, Tutt J, Soman M, Holland A 2014 J. Instrum. 9 P04019

    [10]

    Liu X Y, Yang Y J, Chang Z, Xiao J, Wang Y S, Cui W W, Yao K, Fu Y Q, Chen T X, Hu W, Chen Y 2016 Nucl. Electron. Detect Technol. 36144 (in Chinese) [刘晓艳, 杨彦佶, 常治, 肖君, 王于仨, 崔苇苇, 姚科, 傅云清, 陈田祥, 胡渭, 陈勇 2016 核电子学与探测技术 36 144]

    [11]

    Wang Y S, Chen Y, Xu Y P, Yang Y J, Cui W W, Li M S, Liu X Y, Wang J, Han D W, Chen T X, Li C K, Huo J, Li Z W, Li W, Hu W, Zhang Y, LU B, Zhu Y, Liu Y, Wu D, Sun Q R, Zhang Z L 2012 Chin. Phys. C 36 991

    [12]

    Janesick J 2001 Scientific Charge Coupled Device (Washington: SPIE Press) p141

    [13]

    Janesick J 2001 Scientific Charge Coupled Device (Washington: SPIE Press) p173

    [14]

    Gow J 2009 Ph. D. Dissertaton (London: Brunel University)

    [15]

    Kocher D C 1981 Int. J. Radiat. Biol. 41 305

    [16]

    Zeng J Z, Li Y D, Wen L, He C F, Guo Q, Wang B, Maria, Wei Y, Wang H J, Wu D Y, Wang F, Zhou H 2015 Acta Phys. Sin. 64 194208 (in Chinese) [曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航 2015 物理学报 64 194208]

    [17]

    Zhu Y S 2006 Probability and Statistics in Experimental Physics (2nd Ed.) (Beijing: Science Press) p417 (in Chinese) [朱永生 2006 实验物理中的概率和统计 (第二版) (北京: 科学出版社) 第417页]

    [18]

    Zhu Y S 2006 Probability and Statistics in Experimental Physics (2nd Ed.) (Beijing: Science Press) p616 (in Chinese) [朱永生 2006 实验物理中的概率和统计 (第二版) (北京: 科学出版社) 第616页]

    [19]

    Janesick J 2001 Scientific Charge Coupled Device (Washington: SPIE Press) p75

    [20]

    Pavlov G, Nousek J 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 428 348

    [21]

    Han D K 2009 M. S. Dissertation (Changchun: Jilin University) (in Chinese) [韩德凯 2009 硕士学位论文 (长春: 吉林大学)]

    [22]

    Levato T, Labate L, Galimberti M, Giulietti A, Giulietti D, Gizzi L A 2008 Nucl. Instrum. Methods Phys. Res. Sect. A 592 346

    [23]

    Gow J, Smith P, Pool P, Hall D, Holland A, Murray N 2015 J. Instrum. 10 C01037

    [24]

    Athiray P S, Sreekumar P, Narendranath S, Gow J 2015 Astronomy & Astrophysics 583

  • [1]

    Li T P, Wu M 2008 Physics 37 648 (in Chinese) [李惕碚, 吴枚 2008 物理 37 648]

    [2]

    Lu F J, Xu Y P, Zhang F, Liu H W 2016 Mod. Phys. 4 4 (in Chinese) [卢方军, 徐玉朋, 张帆, 刘红薇 2016 现代物理知识 4 4]

    [3]

    Chen Y, Cui W W 2016 Mod. Phys. 4 25 (in Chinese) [陈勇, 崔苇苇 2016 现代物理知识 4 25]

    [4]

    Holland A, Pool P 2008 Proceedings of SPIE: High Energy, Optical, and Infrared Detectors for Astronomy Ⅲ Marseille, June 23-27, 2008 p7021

    [5]

    Wang Y S, Chen Y, Xu Y P, Wang J, Cui W W, Li W, Han D W, Zhang Z L, Chen T X, Li C K 2010 Chin. Phys. C 34 1812

    [6]

    Yang Y J, Lu J B, Wang Y S, Chen Y, Xu Y P, Cui W W, Li W, Li Z W, Li M S, Liu X Y 2014 Chin. Phys. C 38 60

    [7]

    Murray N, Holland A, Smith D, Gow J, Pool P, Burt D 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 604 180

    [8]

    Yang Y J 2014 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨彦佶 2014 博士学位论文 (长春: 吉林大学)]

    [9]

    Smith P, Gow J, Murray N, Tutt J, Soman M, Holland A 2014 J. Instrum. 9 P04019

    [10]

    Liu X Y, Yang Y J, Chang Z, Xiao J, Wang Y S, Cui W W, Yao K, Fu Y Q, Chen T X, Hu W, Chen Y 2016 Nucl. Electron. Detect Technol. 36144 (in Chinese) [刘晓艳, 杨彦佶, 常治, 肖君, 王于仨, 崔苇苇, 姚科, 傅云清, 陈田祥, 胡渭, 陈勇 2016 核电子学与探测技术 36 144]

    [11]

    Wang Y S, Chen Y, Xu Y P, Yang Y J, Cui W W, Li M S, Liu X Y, Wang J, Han D W, Chen T X, Li C K, Huo J, Li Z W, Li W, Hu W, Zhang Y, LU B, Zhu Y, Liu Y, Wu D, Sun Q R, Zhang Z L 2012 Chin. Phys. C 36 991

    [12]

    Janesick J 2001 Scientific Charge Coupled Device (Washington: SPIE Press) p141

    [13]

    Janesick J 2001 Scientific Charge Coupled Device (Washington: SPIE Press) p173

    [14]

    Gow J 2009 Ph. D. Dissertaton (London: Brunel University)

    [15]

    Kocher D C 1981 Int. J. Radiat. Biol. 41 305

    [16]

    Zeng J Z, Li Y D, Wen L, He C F, Guo Q, Wang B, Maria, Wei Y, Wang H J, Wu D Y, Wang F, Zhou H 2015 Acta Phys. Sin. 64 194208 (in Chinese) [曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航 2015 物理学报 64 194208]

    [17]

    Zhu Y S 2006 Probability and Statistics in Experimental Physics (2nd Ed.) (Beijing: Science Press) p417 (in Chinese) [朱永生 2006 实验物理中的概率和统计 (第二版) (北京: 科学出版社) 第417页]

    [18]

    Zhu Y S 2006 Probability and Statistics in Experimental Physics (2nd Ed.) (Beijing: Science Press) p616 (in Chinese) [朱永生 2006 实验物理中的概率和统计 (第二版) (北京: 科学出版社) 第616页]

    [19]

    Janesick J 2001 Scientific Charge Coupled Device (Washington: SPIE Press) p75

    [20]

    Pavlov G, Nousek J 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 428 348

    [21]

    Han D K 2009 M. S. Dissertation (Changchun: Jilin University) (in Chinese) [韩德凯 2009 硕士学位论文 (长春: 吉林大学)]

    [22]

    Levato T, Labate L, Galimberti M, Giulietti A, Giulietti D, Gizzi L A 2008 Nucl. Instrum. Methods Phys. Res. Sect. A 592 346

    [23]

    Gow J, Smith P, Pool P, Hall D, Holland A, Murray N 2015 J. Instrum. 10 C01037

    [24]

    Athiray P S, Sreekumar P, Narendranath S, Gow J 2015 Astronomy & Astrophysics 583

  • [1] Li Xu-Dong, Jiang Zeng-Gong, Gu Qiang, Zhang Meng, Lin Guo-Qiang, Zhao Ming-Hua, Guo Li. Cs-Te photocathode preparation with Te intermittent and Cs continuous deposition based on improved preparation success rate and quantum efficiency. Acta Physica Sinica, 2022, 71(17): 178501. doi: 10.7498/aps.71.20220818
    [2] Qiao Jian-Liang, Xu Yuan, Gao You-Tang, Niu Jun, Chang Ben-Kang. Quantum efficiency for reflection-mode varied doping negative-electron-affinity GaN photocathode. Acta Physica Sinica, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [3] Zeng Jun-Zhe, Li Yu-Dong, Wen Lin, He Cheng-Fa, Guo Qi, Wang Bo, Maria, Wei Yin, Wang Hai-Jiao, Wu Da-You, Wang Fan, Zhou Hang. Effects of proton and neutron irradiation on dark signal of CCD. Acta Physica Sinica, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [4] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [5] Zeng Jun-Zhe, He Cheng-Fa, Li Yu-Dong, Guo Qi, Wen Lin, Wang Bo, Maria, Wang Hai-Jiao. Particle transport simulation and effect analysis of CCD irradiated by protons. Acta Physica Sinica, 2015, 64(11): 114214. doi: 10.7498/aps.64.114214
    [6] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [7] Liu Bin-Li, Liu De-Zhi, Luo Yi-Fei, Tang Yong, Wang Bo. Investigation into the turn-off mechanism and time of IGBT based on voltage and current. Acta Physica Sinica, 2013, 62(5): 057202. doi: 10.7498/aps.62.057202
    [8] Zhang Yi-Jun, Niu Jun, Zhao Jing, Zou Ji-Jun, Chang Ben-Kang. Effect of exponential-doping structure on quantum yield of transmission-mode GaAs photocathodes. Acta Physica Sinica, 2011, 60(6): 067301. doi: 10.7498/aps.60.067301
    [9] Guo Xiang-Yang, Du Xiao-Qing, Chang Ben-Kang, Qiao Jian-Liang, Qian Yun-Sheng, Wang Xiao-Hui. Quantum efficiency recovery of reflection-mode NEA GaN photocathode. Acta Physica Sinica, 2011, 60(1): 017903. doi: 10.7498/aps.60.017903
    [10] Zhao Jing, Zhang Yi-Jun, Chang Ben-Kang, Xiong Ya-Juan, Zhang Jun-Ju, Shi Feng, Cheng Hong-Chang, Cui Dong-Xu. Research on quantum efficient fitting and structure of high performance transmission-mode GaAs photocathode. Acta Physica Sinica, 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [11] Wang De-Jiang, Kuang Hai-Peng. Experimental study of the effects on signal noise ratio and dynamic range caused by analog gain for CCD. Acta Physica Sinica, 2011, 60(7): 077208. doi: 10.7498/aps.60.077208
    [12] Deng Yi, Zhao De-Gang, Wu Liang-Liang, Liu Zong-Shun, Zhu Jian-Jun, Jiang De-Sheng, Zhang Shu-Ming, Liang Jun-Wu. Effects of AlGaN layer parameter on ultraviolet response of n+-GaN/i-AlxGa1-xN/n+-GaN structure ultraviolet-infrared photodetector. Acta Physica Sinica, 2010, 59(12): 8903-8909. doi: 10.7498/aps.59.8903
    [13] Qiao Jian-Liang, Chang Ben-Kang, Du Xiao-Qing, Niu Jun, Zou Ji-Jun. Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode. Acta Physica Sinica, 2010, 59(4): 2855-2859. doi: 10.7498/aps.59.2855
    [14] Mao Qing-Hua, Jiang Feng-Yi, Cheng Hai-Ying, Zheng Chang-Da. p-AlGaN electron blocking layer with different Al fractions on green InGaN/GaN LEDs grown on Si substrates. Acta Physica Sinica, 2010, 59(11): 8078-8082. doi: 10.7498/aps.59.8078
    [15] Wang Zu-Jun, Tang Ben-Qi, Xiao Zhi-Gang, Liu Min-Bo, Huang Shao-Yan, Zhang Yong. Experimental analysis of charge transfer efficiency degradation of charge coupled devices induced by proton irradiation. Acta Physica Sinica, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [16] Niu Jun, Yang Zhi, Chang Ben-Kang, Qiao Jian-Liang, Zhang Yi-Jun. Study on the model of quantum efficiency of reflective varied doping GaAs photocathode. Acta Physica Sinica, 2009, 58(7): 5002-5006. doi: 10.7498/aps.58.5002
    [17] Du Xiao-Qing, Chang Ben-Kang. Revision of quantum efficiency formula for negative electron affinity photocathodes. Acta Physica Sinica, 2009, 58(12): 8643-8650. doi: 10.7498/aps.58.8643
    [18] Zhou Mei, Zhao De-Gang. Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors. Acta Physica Sinica, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [19] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes. Acta Physica Sinica, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [20] Chang Jun-Tao, Wu Ling-An. Absolute self-calibration of the quantum efficiency of single-photon detectors. Acta Physica Sinica, 2003, 52(5): 1132-1136. doi: 10.7498/aps.52.1132
Metrics
  • Abstract views:  6175
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2017
  • Accepted Date:  16 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回