Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental and numerical investigation on the flow structure and instability of water-entry cavity by a semi-closed cylinder

Lu Zhong-Lei Wei Ying-Jie Wang Cong Cao Wei

Citation:

Experimental and numerical investigation on the flow structure and instability of water-entry cavity by a semi-closed cylinder

Lu Zhong-Lei, Wei Ying-Jie, Wang Cong, Cao Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The purpose of this present study is to address instability flowing characteristics and mechanism of the water-entry cavity created by a semi-closed cylinder. For this purpose, an experimental study and a numerical study of the water-entry of a semi-closed cylinder are carried out. According to the results of the experiments and comparison, the cavitating flows between the semi-closed cylinder water entry and the sealing cylinder water entry, and the fluctuation flow pattern form of the semi-closed cylinder cavitation is found around the body. The flow characteristics of the cavity shape are gained by analyzing the image data. A further insight into the mechanisms of perturbation to the flow structure and the cavity fluctuation by the air in the opening cell are studied based on the law of conservation of energy in water entry. According to the results of simulation and comparison with the cavity visualization of experiment, three instability flow phenomena of cavity are formed during the different stages of water-entry, i.e., flow separation destroyed, local flow transformed near cavity, and unique cavity shedding pattern. A further insight into the characteristics of the flow and the distribution of pressure and velocity during the stage of the cavity unstabilized flow is gained. Finally, the formation mechanism of the cavity unstabilized flow is studied based on the boundary layer theory and Helmhotz vortex theory. The obtained results show that the water poured into the cell of cylinder after the opening end has impacted free surface causes the internal air to compress and expand, and as a consequence of these effects, periodic disturbances of flow structure occur around the cavity, then the cavity presents an identical periodic wave flow with air piston motion and the flow stability of cavity is destroyed. At the eve of impacting, the opening end approaches the free surface, which leads to the inflow velocity attenuation rapidly and the pressure increasing in the cell, which creates an initial pressure higher than ambient pressure. Because of the high pressure, air efflux from the cell forms a gas jet injected into the cavity for the first air expansion stage, then the detaching flow is destroyed and the cavity extension diameter is enlarged. The flow in the gas-liquid mixing domain of cavity is seen as an approximate boundary layer flow pattern where favorable pressure gradient on the upwind side and adverse pressure gradient on the lee side appear alternately. As this flow pattern, re-entrant flow acting on the trough of wave cavitation results in the fact that the laminar-turbulent transition is weakened in the trough field and the local gas-liquid mixing domain is thickened to be involved in unstabilized structure as cloud cavitation. The wave cavity presents a partial and multiple shedding pattern occurring at the trough positions in sequence. There is no mutual interference between shedding cavity and the main cavity. Following the cavity shedding, vortex shedding is formed. The vorticity concentrates on the inside of shedding cavity, and the pressure and velocity present a coherent structure.
      Corresponding author: Wei Ying-Jie, weiyingjie@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11672094), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A201409), and the Special Foundation for Harbin Science and Technology Innovation Talents of China (Grant No. 2013RFLXJ007).
    [1]

    May A 1951 J. Appl. Phys. 22 1219

    [2]

    He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701 (in Chinese) [何春涛, 王聪, 何乾坤, 仇洋 2012 物理学报 61 134701]

    [3]

    Birkhoff G, Caywood T E 1949 J. Appl. Phys. 20 646

    [4]

    Weninger K R, Cho H, Hiller R A, Putterman S J, Williams A 1997 Phys. Rev. E 56 6745

    [5]

    May A 1970 J. Hydrodyn. 4 140

    [6]

    Waugh J G 1968 J. Hydrodyn. 2 87

    [7]

    Jiang Y H, Xu S L, Zhou J 2016 J. Ballistics 28 81 (in Chinese) [蒋运华, 徐胜利, 周杰 2016 弹道学报 28 81]

    [8]

    Stern S A, Tallentire F I 1985 J. Spacecraft Rockets 22 668

    [9]

    Wilson Q, Sahota B S 1980 Proceedings of the 12th Annual Offshore Technology Conference Houston, USA, May 5-8, 1980 p5

    [10]

    Lu Z L, Wei Y J, Wang C, Sun Z 2016 J. Beijing Univ. Aeronaut Astronaut 42 2403 (in Chinese) [路中磊, 魏英杰, 王聪, 孙钊 2016 北京航空航天大学学报 42 2403]

    [11]

    Lu Z L, Wei Y J, Wang C, Sun Z 2016 Acta Phys. Sin. 65 014704 (in Chinese) [路中磊, 魏英杰, 王聪, 孙钊 2016 物理学报 65 014704]

    [12]

    Worthington A M, Cole R S 1900 Phil. Trans. Roy. Soc. 189A 175

    [13]

    Silberman E, Song C S 1961 J. Ship Res. 5 13

    [14]

    Brennen C 1970 J. Fluid Mech. 44 33

    [15]

    Grumstrup T, Keller J B, Belmonte A 2007 Phys. Rev. Lett. 99 114502

    [16]

    Bergmann R, van der M D, Gekle S, van der Bos A, Lohse D 2008 J. Fluid Mech. 633 381

    [17]

    Abraham J, Gorman J, Reseghetti F, Sparrow E, Stark J, Shepard T 2014 Ocean Eng. 76 1

    [18]

    Zhang X W, Zhang J Z, Wei Y J, Wang C 2008 J. Vibr. Shock. 40 52 (in Chinese) [张学伟, 张嘉钟, 魏英杰, 王聪 2008 振动与冲击 40 52]

    [19]

    Logvinovich G V (Translated by Lederman D) 1972 Hydrodynamics of Free-Boundary Flows (Jersualem: IPST Press) pp104-118

    [20]

    Haller G 2005 J. Fluid Mech. 525 1

  • [1]

    May A 1951 J. Appl. Phys. 22 1219

    [2]

    He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701 (in Chinese) [何春涛, 王聪, 何乾坤, 仇洋 2012 物理学报 61 134701]

    [3]

    Birkhoff G, Caywood T E 1949 J. Appl. Phys. 20 646

    [4]

    Weninger K R, Cho H, Hiller R A, Putterman S J, Williams A 1997 Phys. Rev. E 56 6745

    [5]

    May A 1970 J. Hydrodyn. 4 140

    [6]

    Waugh J G 1968 J. Hydrodyn. 2 87

    [7]

    Jiang Y H, Xu S L, Zhou J 2016 J. Ballistics 28 81 (in Chinese) [蒋运华, 徐胜利, 周杰 2016 弹道学报 28 81]

    [8]

    Stern S A, Tallentire F I 1985 J. Spacecraft Rockets 22 668

    [9]

    Wilson Q, Sahota B S 1980 Proceedings of the 12th Annual Offshore Technology Conference Houston, USA, May 5-8, 1980 p5

    [10]

    Lu Z L, Wei Y J, Wang C, Sun Z 2016 J. Beijing Univ. Aeronaut Astronaut 42 2403 (in Chinese) [路中磊, 魏英杰, 王聪, 孙钊 2016 北京航空航天大学学报 42 2403]

    [11]

    Lu Z L, Wei Y J, Wang C, Sun Z 2016 Acta Phys. Sin. 65 014704 (in Chinese) [路中磊, 魏英杰, 王聪, 孙钊 2016 物理学报 65 014704]

    [12]

    Worthington A M, Cole R S 1900 Phil. Trans. Roy. Soc. 189A 175

    [13]

    Silberman E, Song C S 1961 J. Ship Res. 5 13

    [14]

    Brennen C 1970 J. Fluid Mech. 44 33

    [15]

    Grumstrup T, Keller J B, Belmonte A 2007 Phys. Rev. Lett. 99 114502

    [16]

    Bergmann R, van der M D, Gekle S, van der Bos A, Lohse D 2008 J. Fluid Mech. 633 381

    [17]

    Abraham J, Gorman J, Reseghetti F, Sparrow E, Stark J, Shepard T 2014 Ocean Eng. 76 1

    [18]

    Zhang X W, Zhang J Z, Wei Y J, Wang C 2008 J. Vibr. Shock. 40 52 (in Chinese) [张学伟, 张嘉钟, 魏英杰, 王聪 2008 振动与冲击 40 52]

    [19]

    Logvinovich G V (Translated by Lederman D) 1972 Hydrodynamics of Free-Boundary Flows (Jersualem: IPST Press) pp104-118

    [20]

    Haller G 2005 J. Fluid Mech. 525 1

  • [1] WANG Yuyao, SUN Xiaobing, CUI Wenyu, HU Yuan, Changping YU, SONG Bo, XU Lingling, YU Haixiao, WEI Yichen, WANG Yuxuan, YAO Shun. Imaging Simulation Method for Light Scattering Signals in Atmospheric Disturbance Density Fields. Acta Physica Sinica, 2025, 74(12): . doi: 10.7498/aps.74.20250249
    [2] Wan Bing-Bing, Hu Wei-Bo, Li Xiao-Hu, Huang Wen-Feng, Chen Jian-Qiang, Tu Guo-Hua. Three-dimensional receptivity of high-speed blunt cone to different types of freestream disturbances. Acta Physica Sinica, 2024, 73(23): 234701. doi: 10.7498/aps.73.20241383
    [3] Li Zhu-Bai, Wei Lei, Zhang Zhen, Duan Dong-Wei, Zhao Qian. Macroeffect of magnons and thermal fluctiation on magnetization reversal. Acta Physica Sinica, 2022, 71(12): 127502. doi: 10.7498/aps.71.20220168
    [4] Cheng Zhi-Yuan, Ma Cai-Wen, Ma Qing. Theoretical research of influence of laser intensity fluctuation on imaging quality degradation of coherent field. Acta Physica Sinica, 2017, 66(24): 244202. doi: 10.7498/aps.66.244202
    [5] Xie Wei-Hua, Yin Si-Fan, Li Bo, Cao Yan-Ping, Feng Xi-Qiao. Three-dimensional morphological wrinkling of cylindrical soft tissues. Acta Physica Sinica, 2016, 65(18): 188704. doi: 10.7498/aps.65.188704
    [6] Zhu Yang-Zhu, Yi Shi-He, Kong Xiao-Ping, He Lin. Fine structures and characteristics on supersonic flow over backward facing step with tangential injection. Acta Physica Sinica, 2015, 64(6): 064701. doi: 10.7498/aps.64.064701
    [7] Yao Xiong-Liang, Ye Xi, Zhang A-Man. Cavitation bubble in compressible fluid subjected to traveling wave. Acta Physica Sinica, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [8] Mo Jia-Qi, Cheng Rong-Jun, Ge Hong-Xia. Travelling wave solution of the weakly nonlinear evolution equation with control term. Acta Physica Sinica, 2011, 60(5): 050204. doi: 10.7498/aps.60.050204
    [9] Mo Jia-Qi. The variational iteration solution method for a classof nonlinear disturbed evolution equations. Acta Physica Sinica, 2011, 60(2): 020202. doi: 10.7498/aps.60.020202
    [10] Shi Lan-Fang, Zhou Xian-Chun, Mo Jia-Qi. Asymptotic solution for fractal soliton of disturbed Nizhnik-Novikov-Veselov system. Acta Physica Sinica, 2011, 60(11): 110205. doi: 10.7498/aps.60.110205
    [11] Wang Na, Ni Ming-Kang. Model solution of perturbed delays in classical physics. Acta Physica Sinica, 2011, 60(5): 050203. doi: 10.7498/aps.60.050203
    [12] Mo Jia-Qi. Analytic solution for a class of generalized Sine-Gordon perturbation equation. Acta Physica Sinica, 2009, 58(5): 2930-2933. doi: 10.7498/aps.58.2930
    [13] Mo Jia-Qi, Chen Li-Hua. Approximate solution for a class of solitons of the Landau-Ginzburg-Higgs perturbed equation. Acta Physica Sinica, 2008, 57(8): 4646-4648. doi: 10.7498/aps.57.4646
    [14] Mo Jia-Qi, Yao Jing-Sun. Homotopic mapping solution of soliton for perturbed KdV equation. Acta Physica Sinica, 2008, 57(12): 7419-7422. doi: 10.7498/aps.57.7419
    [15] Liu Tao-Xiang, Tang Xin-Feng, Li Han, Su Xian-Li, Zhang Qing-Jie. Study on rattling of filling atom in Sm filled-skutterudite compounds. Acta Physica Sinica, 2008, 57(11): 7078-7082. doi: 10.7498/aps.57.7078
    [16] Mo Jia-Qi, Zhang Wei-Jiang, He Ming. The variational iteration method for the soliton solution of nonlinear generalized Landau-Ginzburg-Higgs equation. Acta Physica Sinica, 2007, 56(4): 1847-1850. doi: 10.7498/aps.56.1847
    [17] Mo Jia-Qi, Wang Hui, Lin Yi-Hua. Perturbation theory of soliton solution for the generalized Landau-Ginzburg-Higgs equation. Acta Physica Sinica, 2005, 54(12): 5581-5584. doi: 10.7498/aps.54.5581
    [18] Zhang Da-Cheng, Wang Lu-Xia, Liu De-Sheng, Han Sheng-Hao, Xie Shi-Jie. Effect of atomic fluctuation on the localized modes in one-dimensional system. Acta Physica Sinica, 2003, 52(12): 3191-3196. doi: 10.7498/aps.52.3191
    [19] Li Hong-Xia, Wu Fu-Quan, Fan Ji-Yang. Thermodynamic effect on transmitted intensity perturbance of air-gaped Glan-typ e polarizing prisms. Acta Physica Sinica, 2003, 52(8): 2081-2086. doi: 10.7498/aps.52.2081
    [20] DING GUO-LU, LIN XIN, HUANG WEI-DONG, ZHOU YAO-HE. SELECTION OF INITIAL PERTURBATION WAVELENGTHOF A PLANAR SOLID-LIQUID INTERFACE. Acta Physica Sinica, 1997, 46(6): 1243-1248. doi: 10.7498/aps.46.1243
Metrics
  • Abstract views:  6637
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2016
  • Accepted Date:  16 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回