-
The magnetization reversal resulting from the thermal fluctuation is irreversible for overcoming the energy barrier, ant it is called the thermally assisted tunneling. In this paper the relaxation in magnetizaition reversal resulting from the thermal fluctuation is observed in Pr-Fe-B permanent magnet. The dependence of magnetic moment on the time natural logarithm is the same as that on the energy barrier in the thermally assisted tunneling. So the relaxation in magnetization reversal originates from the macroeffect of magnons which follow Bose distribution law. The critical size in the irreversible magnetization reversal obtained by the fluctuation field is on a nanometer scale and close to the theoretical domain wall size, indicating that the thermally assisted magnetization reversal undergoes the nucleation and de-pinning of domain wall. The increase of coupling volume will reduce the possibility of magnons tunneling in magnetization reversal due to the weakening effect of thermal fluctuation. The variation of fluctuation field with the field verifies the effect of exchange coupling in Pr-Fe-B magnets, and the calculated value of fluctuation field is consistent with the aftereffect of thermal activation. With the increase of temperature the thermal fluctuation energy increases, and though the aftereffect of thermal fluctuation weakens due to the exchange coupling, the ratio of thermal fluctuation aftereffect to coercivity increases in Pr-Fe-B magnet.
-
Keywords:
- thermal fluctuation /
- magnons /
- domain wall /
- magnetization reversal
[1] Toga Y, Miyashita S, Sakuma A, Miyake T 2020 NPJ Comput. Mater. 6 67Google Scholar
[2] Zhang H W, Zhang S Y, Shen B G, Goll D, Kronmüller H 2001 Chin. Phys. 10 1169Google Scholar
[3] 钟文定 1996 物理 25 37
Zhong W D 1996 Physics 25 37
[4] Naser H, Rado C, Lapertot G, Raymond S 2020 Phys. Rev. B 102 014443Google Scholar
[5] Zhao G P, Wang X L, Yang C, Xie L H, Zhou G 2007 J. Appl. Phys. 101 09K102Google Scholar
[6] Zhu M G, Liu X M, Fang Y K, Li Z B, Li W 2006 Rare. Metals. 25 630Google Scholar
[7] Zhao G P, Zhao M G, Lim H S, Feng Y P, Ong C K 2005 Appl. Phys. Lett. 87 162513Google Scholar
[8] Li Z B, Shen B G, Niu E, Sun J R 2013 Appl. Phys. Lett. 103 062405Google Scholar
[9] Givord D, Rossignol M, Barthem V M T S 2003 J. Magn. Magn. Mater. 258-259 1Google Scholar
[10] Zhang H W, Rong C B, Du X B, Zhang S Y, Shen B G 2004 J. Magn. Magn. Mater. 278 127Google Scholar
[11] Liu D, Zhao, T Y, Shen, B G, Peng F, Zhang M, Hu F X, Sun J R 2021 J. Magn. Magn. Mater. 527 167773Google Scholar
[12] Tang X, Li J, Miyazaki Y, Sepehri-Amin H, Ohkubo T, Schreflc T, Hono K 2020 Acta Mater. 183 408Google Scholar
[13] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根 2019 物理学报 68 177501Google Scholar
Li Z B, Li Y, Qin Y, Zhang X F, Shen B G 2019 Acta Phys. Sin. 68 177501Google Scholar
[14] Fischbacher J, Kovacs A, Oezelt H, Gusenbauer M, Schrefl T, Exl L, Givord D, Dempsey N M, Zimanyi G, Winklhofer M, Hrkac G, Chantrell R, Sakuma N, Yano M, Kato A, Shoji T, Manabe A 2017 Appl. Phys. Lett. 111 072404Google Scholar
[15] Wohlfarth E P 1984 J. Phys. F: Met. Phys. 14 L155Google Scholar
[16] 姜寿亭, 李卫 2003 凝聚态磁性物理 (北京: 科学出版社) 第242页
Jiang S T, Li W 2003 Condensed Matter Physics of Magnetism (Bejing: Science Press) p242 (in Chinese)
[17] Zhang H W, Rong C B, Zhang J, Zhang S Y, Shen B G 2002 Phys. Rev. B 66 184436Google Scholar
[18] Gong Q H, Yi M, Xu B X 2019 Phys. Rev. Mater. 3 084406Google Scholar
-
-
[1] Toga Y, Miyashita S, Sakuma A, Miyake T 2020 NPJ Comput. Mater. 6 67Google Scholar
[2] Zhang H W, Zhang S Y, Shen B G, Goll D, Kronmüller H 2001 Chin. Phys. 10 1169Google Scholar
[3] 钟文定 1996 物理 25 37
Zhong W D 1996 Physics 25 37
[4] Naser H, Rado C, Lapertot G, Raymond S 2020 Phys. Rev. B 102 014443Google Scholar
[5] Zhao G P, Wang X L, Yang C, Xie L H, Zhou G 2007 J. Appl. Phys. 101 09K102Google Scholar
[6] Zhu M G, Liu X M, Fang Y K, Li Z B, Li W 2006 Rare. Metals. 25 630Google Scholar
[7] Zhao G P, Zhao M G, Lim H S, Feng Y P, Ong C K 2005 Appl. Phys. Lett. 87 162513Google Scholar
[8] Li Z B, Shen B G, Niu E, Sun J R 2013 Appl. Phys. Lett. 103 062405Google Scholar
[9] Givord D, Rossignol M, Barthem V M T S 2003 J. Magn. Magn. Mater. 258-259 1Google Scholar
[10] Zhang H W, Rong C B, Du X B, Zhang S Y, Shen B G 2004 J. Magn. Magn. Mater. 278 127Google Scholar
[11] Liu D, Zhao, T Y, Shen, B G, Peng F, Zhang M, Hu F X, Sun J R 2021 J. Magn. Magn. Mater. 527 167773Google Scholar
[12] Tang X, Li J, Miyazaki Y, Sepehri-Amin H, Ohkubo T, Schreflc T, Hono K 2020 Acta Mater. 183 408Google Scholar
[13] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根 2019 物理学报 68 177501Google Scholar
Li Z B, Li Y, Qin Y, Zhang X F, Shen B G 2019 Acta Phys. Sin. 68 177501Google Scholar
[14] Fischbacher J, Kovacs A, Oezelt H, Gusenbauer M, Schrefl T, Exl L, Givord D, Dempsey N M, Zimanyi G, Winklhofer M, Hrkac G, Chantrell R, Sakuma N, Yano M, Kato A, Shoji T, Manabe A 2017 Appl. Phys. Lett. 111 072404Google Scholar
[15] Wohlfarth E P 1984 J. Phys. F: Met. Phys. 14 L155Google Scholar
[16] 姜寿亭, 李卫 2003 凝聚态磁性物理 (北京: 科学出版社) 第242页
Jiang S T, Li W 2003 Condensed Matter Physics of Magnetism (Bejing: Science Press) p242 (in Chinese)
[17] Zhang H W, Rong C B, Zhang J, Zhang S Y, Shen B G 2002 Phys. Rev. B 66 184436Google Scholar
[18] Gong Q H, Yi M, Xu B X 2019 Phys. Rev. Mater. 3 084406Google Scholar
Catalog
Metrics
- Abstract views: 4103
- PDF Downloads: 55
- Cited By: 0