Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tuning characteristics of fluorescent light source by dye-doped liquid crystal filled hollow fiber

Lü Yue-Lan Yin Xiang-Bao Yang Yue Liu Yong-Jun Yuan Li-Bo

Citation:

Tuning characteristics of fluorescent light source by dye-doped liquid crystal filled hollow fiber

Lü Yue-Lan, Yin Xiang-Bao, Yang Yue, Liu Yong-Jun, Yuan Li-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The fluorescent fiber light source has been widely used in many areas, such as optical fiber communication and medical imaging, owing to its low cost and wide optical spectrum. The temperature-sensitive refractive index of liquid crystal makes it a suitable filling material used in the fluorescent light source. The existing work has investigated the filling of liquid crystal into the air holes in cladding of photonic crystal fiber. However, the photonic crystal fiber has the disadvantages of complicated craft and high cost. As is well known, the hollow fiber has the advantages of the easy preparation and low cost, but the filling of liquid crystal into the hollow fiber of fluorescent light source is rarely investigated. In this paper, we investigate that a tunable hollow fiber of fluorescent light source is filled with dye doped liquid crystals. The transmission characteristics of the fluorescent light source are theoretically analyzed. The variation in property of the B4400 fluorescent spectrum is numerically discussed with the dye molecule energy level structure theory. The numerical simulation results show that the relative refractive index is dependent on temperature. It first increases linearly with the increase of temperature and then exponentially increases rapidly till clearing point 61.9 C, finally decreases slowly to a saturated value. In order to find an optimum doping concentration, the doping-concentration-dependent fluorescence output intensity is analyzed by using the super continuum spectrum of YAG pump with a wavelength of 1064 nm. The fluorescence light intensities are amplified at three different selective dye doping concentrations, namely 0.2 wt%, 1 wt% and 2 wt% in the experiment, respectively. The highest output is obtained at the 1 wt% doping concentration, which verifies the selective fluorescence amplification property of the fluorescent source. It is also demonstrated that the transmission characteristics and the tunable range of the liquid crystal filled fluorescent light source can be adjusted by modulating the temperature in experiment. And the temperature-dependence of the fluorescence source is experimentally demonstrated by using the 1 wt% doping concentration dye-doped liquid crystal. Using a pulsed YAG pump with a wavelength of 532 nm, tunable characteristics of the fluorescent light source composed of a dye-doped liquid crystal filled hollow fiber, are studied and show that the central wavelength increases from 590 nm to 605 nm and the spectral width broadens from 228 nm to 236 nm with the increase of the temperature. The proposed fluorescent light source can be controlled by adjusting the temperature within limits. These findings will give a guidance for the practical applications of the dye doped liquid crystal based fluorescent light source, and offer a theoretical foundation for the further study of the liquid crystal filled fluorescent fiber light source.
      Corresponding author: Liu Yong-Jun, liuyj@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.U1531102,61107059,61290314).
    [1]

    Miao Y P, Liu B, Zhang K L, Liu Y, Zhang H 2011 Appl. Phys. Lett. 98 021103

    [2]

    Yan L S, Yi A, Pan W 2010 IEEE Photon. Technol. Lett. 22 1391

    [3]

    Zhou F, Hao R, Jin X F, Zhang X M, Li E P 2014 IEEE Photon. Technol. Lett. 26 1867

    [4]

    Ren C Y, Shi H X, Ai Y B, Yin X B 2016 Chin. Phys. B 25 094218

    [5]

    Malmstrm M, Margulis W, Tarasenko O, Pasiskevicius V, Laurell F 2012 Opt. Express 20 2905

    [6]

    Lee S, Park J, Jeong Y, Jung H 2009 J. Lightwave Technol. 27 4919

    [7]

    Yu G Y, Song Y F, Wang Y, He X, Liu Y Q, Liu W L, Yang Y Q 2011 Chem. Phys. Lett. 517 242

    [8]

    Qiu X Q, Li X T, Niu K, Lee S Y 2011 J. Raman Spectrosc. 42 563

    [9]

    Qian W W, Zhao C L, He S L, Dong X Y, Zhang S Q, Zhang Z X, Jin S Z, Gou J T, Wei H F 2011 Opt. Lett. 36 1548

    [10]

    Wang D D, Wang L L, Li D D 2011 Acta Phys. Sin. 61 128101 (in Chinese) [王豆豆, 王丽莉, 李冬冬 2011 物理学报 61 128101]

    [11]

    Marzena M T, Sławomir E, Tomasz R W 2013 Photon. Lett. 5 14

    [12]

    Wu R N, Wu X J, Wu J, Dai Q 2015 Acta Opt. Sin. 35 0223003 (in Chinese) [乌日娜, 邬小娇, 吴杰, 岱钦 2015 光学学报 35 0223003]

    [13]

    Fan R W, Liu W, Li X H, Zhang X L, Xia Y Q, Chen D Y 2007 Infrared and Laser Eng. 36 50 (in Chinese) [樊荣伟, 刘维, 李晓晖, 张秀丽, 夏元钦, 陈德应 2007 红外与激光工程 36 50]

    [14]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [15]

    Yu Z, Li W, Hagen J A, Zhou Y, Klotzkin D 2007 Appl. Opt. 46 1507

    [16]

    Zhan Y B, He L, Mo J Y, Li R H 2014 Chin. J. Lumin. 35 269 (in Chinese) [詹永波, 何磊, 磨俊宇, 李润华 2014 发光学报 35 269]

    [17]

    Ma M X, Zhu D C, Tu M J 2009 Acta Phys. Sin. 58 1526 (in Chinese) [马明星, 朱达川, 涂铭旌 2009 物理学报 58 1526]

    [18]

    Wang J L, Du M Q, Zhang L L, Liu Y J, Sun W M 2015 Acta Phys. Sin. 64 120702 (in Chinese) [王家璐, 杜木清, 张伶俐, 刘永军, 孙伟民 2015 物理学报 64 120702]

    [19]

    Ozbek H, Ustunel S, Kutlu E, Cetinkaya M C 2014 J. Molecular Liquids 199 275

    [20]

    Bi W H, Wang Y Y, Fu G W, Wang X Y, Li C L 2016 Acta Phys. Sin. 65 047801 (in Chinese) [毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽 2016 物理学报 65 047801]

    [21]

    Ma H, Wang J Z, Abakar A M A, Yang M C, Zhao X, Liu L H 2016 Laser Optoelectron. Prog. 5 213 (in Chinese) [马洪虎, 王金忠, Abakar A M A, 杨明超, 赵霞, 刘礼华 2016 激光与光电子学进展 5 213]

  • [1]

    Miao Y P, Liu B, Zhang K L, Liu Y, Zhang H 2011 Appl. Phys. Lett. 98 021103

    [2]

    Yan L S, Yi A, Pan W 2010 IEEE Photon. Technol. Lett. 22 1391

    [3]

    Zhou F, Hao R, Jin X F, Zhang X M, Li E P 2014 IEEE Photon. Technol. Lett. 26 1867

    [4]

    Ren C Y, Shi H X, Ai Y B, Yin X B 2016 Chin. Phys. B 25 094218

    [5]

    Malmstrm M, Margulis W, Tarasenko O, Pasiskevicius V, Laurell F 2012 Opt. Express 20 2905

    [6]

    Lee S, Park J, Jeong Y, Jung H 2009 J. Lightwave Technol. 27 4919

    [7]

    Yu G Y, Song Y F, Wang Y, He X, Liu Y Q, Liu W L, Yang Y Q 2011 Chem. Phys. Lett. 517 242

    [8]

    Qiu X Q, Li X T, Niu K, Lee S Y 2011 J. Raman Spectrosc. 42 563

    [9]

    Qian W W, Zhao C L, He S L, Dong X Y, Zhang S Q, Zhang Z X, Jin S Z, Gou J T, Wei H F 2011 Opt. Lett. 36 1548

    [10]

    Wang D D, Wang L L, Li D D 2011 Acta Phys. Sin. 61 128101 (in Chinese) [王豆豆, 王丽莉, 李冬冬 2011 物理学报 61 128101]

    [11]

    Marzena M T, Sławomir E, Tomasz R W 2013 Photon. Lett. 5 14

    [12]

    Wu R N, Wu X J, Wu J, Dai Q 2015 Acta Opt. Sin. 35 0223003 (in Chinese) [乌日娜, 邬小娇, 吴杰, 岱钦 2015 光学学报 35 0223003]

    [13]

    Fan R W, Liu W, Li X H, Zhang X L, Xia Y Q, Chen D Y 2007 Infrared and Laser Eng. 36 50 (in Chinese) [樊荣伟, 刘维, 李晓晖, 张秀丽, 夏元钦, 陈德应 2007 红外与激光工程 36 50]

    [14]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [15]

    Yu Z, Li W, Hagen J A, Zhou Y, Klotzkin D 2007 Appl. Opt. 46 1507

    [16]

    Zhan Y B, He L, Mo J Y, Li R H 2014 Chin. J. Lumin. 35 269 (in Chinese) [詹永波, 何磊, 磨俊宇, 李润华 2014 发光学报 35 269]

    [17]

    Ma M X, Zhu D C, Tu M J 2009 Acta Phys. Sin. 58 1526 (in Chinese) [马明星, 朱达川, 涂铭旌 2009 物理学报 58 1526]

    [18]

    Wang J L, Du M Q, Zhang L L, Liu Y J, Sun W M 2015 Acta Phys. Sin. 64 120702 (in Chinese) [王家璐, 杜木清, 张伶俐, 刘永军, 孙伟民 2015 物理学报 64 120702]

    [19]

    Ozbek H, Ustunel S, Kutlu E, Cetinkaya M C 2014 J. Molecular Liquids 199 275

    [20]

    Bi W H, Wang Y Y, Fu G W, Wang X Y, Li C L 2016 Acta Phys. Sin. 65 047801 (in Chinese) [毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽 2016 物理学报 65 047801]

    [21]

    Ma H, Wang J Z, Abakar A M A, Yang M C, Zhao X, Liu L H 2016 Laser Optoelectron. Prog. 5 213 (in Chinese) [马洪虎, 王金忠, Abakar A M A, 杨明超, 赵霞, 刘礼华 2016 激光与光电子学进展 5 213]

  • [1] Wang Zi-Ling, Ye Jia-Yao, Huang Zhi-Jun, Song Zhen-Peng, Li Bing-Xiang, Xiao Rui-Lin, Lu Yan-Qing. Formation and annihilation of electrically driven defects in nematic liquid crystals with negative dielectric anisotropy. Acta Physica Sinica, 2024, 73(5): 056101. doi: 10.7498/aps.73.20231655
    [2] Chen Hong-Mei, Li Shi-Wei, Li Kai-Jing, Zhang Zhi-Yong, Chen Hao, Wang Ting-Ting. Molecules structure and viscosity relationship of nematic liquid crystal and BPNN-QSAR model. Acta Physica Sinica, 2024, 73(6): 066101. doi: 10.7498/aps.73.20231763
    [3] Wang Hao-Ran, Zhang Yin-Chuan, Hu Wei, Guo Qi. Saturable nonlinearity and bistable solitons in nematic liquid crystals. Acta Physica Sinica, 2023, 72(7): 074204. doi: 10.7498/aps.72.20222088
    [4] Liang De-Shan, Huang Hou-Bing, Zhao Ya-Nan, Liu Zhu-Hong, Wang Hao-Yu, Ma Xing-Qiao. Size effect of topological charge in disc-like nematic liquid crystal films. Acta Physica Sinica, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [5] Hou Zhi-Shan, Xu Shuai, Luo Yang, Li Ai-Wu, Yang Han. Femtosecond laser 3D printing temperature sensitive microsphere lasers. Acta Physica Sinica, 2019, 68(19): 194204. doi: 10.7498/aps.68.20190298
    [6] Yin Xiang-Bao, Liu Yong-Jun, Zhang Ling-Li, Lü Yue-Lan, Huo Bo-Fan, Sun Wei-Min. Liquid crystal lens with large-range electrically controllable variable focal length. Acta Physica Sinica, 2015, 64(18): 184212. doi: 10.7498/aps.64.184212
    [7] Wang Qiang, Guan Bao-Lu, Liu Ke, Shi Guo-Zhu, Liu Xin, Cui Bi-Feng, Han Jun, Li Jian-Jun, Xu Chen. Temperature characteristics of VCSEL with liquid crystal overlay. Acta Physica Sinica, 2013, 62(23): 234206. doi: 10.7498/aps.62.234206
    [8] Liu Yong-Jun, Sun Wei-Min, Liu Xiao-Qi, Yao Li-Shuang, Lu Xing-Hai, Xuan Li. Investigation of the tunable laser of one-dimensional photonic crystal with dye-doped nematic liquid crystal defect layer. Acta Physica Sinica, 2012, 61(11): 114211. doi: 10.7498/aps.61.114211
    [9] Wang Zhuo, Wang Yu-Ye, Yao Jian-Quan, Wang Peng. The study of narrow-band terahertz-wave generation by difference frequency mixing in periodical-inverted GaAs crystal with ps pump pulses. Acta Physica Sinica, 2010, 59(5): 3249-3254. doi: 10.7498/aps.59.3249
    [10] Tang Xian-Zhu, Lu Xing-Hai, Peng Zeng-Hui, Liu Yong-Gang, Xuan Li. Theoretical approximation study on the helix structure of ferroelectric liquid crystal. Acta Physica Sinica, 2010, 59(6): 4001-4007. doi: 10.7498/aps.59.4001
    [11] Zhang Ran, He Jun, Peng Zeng-Hui, Xuan Li. Molecular dynamics simulation of the rotational viscosity and its odd-even effect of nematic liquid crystals nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8). Acta Physica Sinica, 2009, 58(8): 5560-5566. doi: 10.7498/aps.58.5560
    [12] Dou Jun-Hong, Sheng Yan, Zhang Dao-Zhong. Temperature and wavelength tuning of second harmonic generation in a nonlinear photonic quasi-crystal. Acta Physica Sinica, 2009, 58(7): 4685-4688. doi: 10.7498/aps.58.4685
    [13] Ren Chang-Yu, Sun Xiu-Dong, Pei Yan-Bo. Anisotropic diffraction pattern formation from a nematic liquid crystals film induced by low-power linearly polarized beam. Acta Physica Sinica, 2009, 58(1): 298-303. doi: 10.7498/aps.58.298.1
    [14] Yang Ping-Bao, Cao Long-Gui, Hu Wei, Zhu Ye-Qing, Guo Qi, Yang Xiang-Bo. Interactions between strong nonlocal optical spatial solitons in nematic liquid crystals. Acta Physica Sinica, 2008, 57(1): 285-290. doi: 10.7498/aps.57.285
    [15] Long Xue-Wen, Hu Wei, Zhang Tao, Guo Qi, Lan Sheng, Gao Xi-Cun. Theoretical investigation of propagation of nonlocal spatial soliton in nematic liquid crystals. Acta Physica Sinica, 2007, 56(3): 1397-1403. doi: 10.7498/aps.56.1397
    [16] Zhan Kai-Yun, Pei Yan-Bo, Hou Chun-Feng. Observation of spatial solitons in nematic liquid crystals. Acta Physica Sinica, 2006, 55(9): 4686-4690. doi: 10.7498/aps.55.4686
    [17] Liu Hong, Wang Hui. Phase transition in biaxial nematic liquid crystal. Acta Physica Sinica, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [18] Han Qun, Lü Ke-Cheng, Li Jia-Fang, Li Yi-Gang, Chen Sheng-Ping. Research on a novel fiber Bragg grating thermal tuning scheme*. Acta Physica Sinica, 2004, 53(12): 4253-4256. doi: 10.7498/aps.53.4253
    [19] Qiao Qi-Quan, Chen Bai, Fan Wei, Chen Jia-Lin, Li Xue-Chun, Lin Zun-Qi. Investigation of Yb3+-doped superfluorescent fibre sources around 105 3nm. Acta Physica Sinica, 2003, 52(6): 1422-1426. doi: 10.7498/aps.52.1422
    [20] CHU GUI-YIN, ZHU HUA-NAN, ZHANG ZHI-GUO, FU PAN-MING, YE PEI-XIAN. STUDY OF DEGENERATE FOUR-WAVE MIXING IN DYE-DISSOLVING LIQUID CRYSTAL IN ITS NEMATIC PHASE. Acta Physica Sinica, 1985, 34(3): 421-425. doi: 10.7498/aps.34.421
Metrics
  • Abstract views:  5749
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  04 February 2017
  • Accepted Date:  07 April 2017
  • Published Online:  05 August 2017

/

返回文章
返回