Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Method and experiment of path rainfall intensity inversion using a microwave link based on nonspherical rain-induced model

Song Kun Gao Tai-Chang Liu Xi-Chuan Yin Min Xue Yang

Citation:

Method and experiment of path rainfall intensity inversion using a microwave link based on nonspherical rain-induced model

Song Kun, Gao Tai-Chang, Liu Xi-Chuan, Yin Min, Xue Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is important to measure rainfall accurately with high spatial and temporal resolution in meteorology, hydrology, agriculture industry, environment conservation, flood warning and weather forecasting. The use of attenuated information about microwave propagation in rainfall areas to acquire surface precipitation intensity has been shown to be a practical approach to measuring rainfall in recent years. However, the inversion of a single-frequency link is based on the assumption of rainfall attenuation under a certain frequency condition. Further, obtaining parameters that comply with all rainfall events for the rainfall attenuation model is a challenge, often leading to an overestimation of the rainfall intensity. Therefore, based on extended boundary condition method and Gamma raindrop size distribution, an inversion method of the path rainfall intensity by using a microwave link rain-induced attenuation is proposed in order to improve the accuracy of rainfall measurement by microwave rain-induced attenuation. In this paper, we use the characteristics of an atmospheric attenuation model to eliminate the influence of non-rainfall-caused attenuation on the process of rainfall inversion. On the basis of scattering theory and by utilizing the Gamma raindrop size drop, we use the extended boundary condition method to calculate the characteristics of microwave attenuation for Pruppacher-Beard raindrop shape model. The correction model of rainfall effective attenuation and rainfall inversion model of line-of-sight microwave links are proposed, based on the microwave rain attenuation characteristics and raindrop size distribution statistics. In this paper, we propose 15-20 GHz inversion model of path-average rainfall intensity based on nonspherical rain-induced model by using Levenberg-Marquardt optimization algorithm. Meanwhile, we analyze the variations of parameters of rain-induced model under the condition of different temperatures. Besides, we design a line-of-sight microwave experimental system for measuring the rainfall, and the path average rain rate is inversed by rainfall inversion model, which is compared with an OTT disdrometer. The results show that the correlation coefficient of rain rate inversed by microwave link and that of disdrometer are both higher than 0.6 mostly, and the maximum value is 0.96; the error of accumulated rain amount is less than 2.47 mm, the minimum value is 0.28 mm; the relative error of accumulated rain amount is less than 1.84%, the minimum value is 0.44%. The experimental results validate the feasibility and accuracy of rainfall inversion method proposed in this paper. In addition, the experimental result reflects that rainfall intensity retrieved method based on nonspherical raindrop model has advantages over the method based on spherical raindrop model.
      Corresponding author: Gao Tai-Chang, 2009gaotc@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.41475020,41505135).
    [1]

    Gao T C 2012 Meteorol. Hydrol. Eq. 23 1 (in Chinese) [高太长 2012 气象水文装备 23 1]

    [2]

    L D R, Wang P C, Qiu J H, Tao S Y 2003 Chin. J. Atmos. Sci. 27 552 (in Chinese) [吕达仁, 王普才, 邱金恒, 陶诗言 2003 大气科学 27 552]

    [3]

    Liang H H, Xu B X, Liu L P, Ge R S 2005 Adv. Earth Sci. 20 541 (in Chinese) [梁海河, 徐宝祥, 刘黎平, 葛润生 2005 地球科学进展 20 541]

    [4]

    Qie X S, L D R, Chen H B, Wang P C, Duan S, Zhang W X 2008 Chin. J. Atmos. Sci. 32 867 (in Chinese) [郄秀书, 吕达仁, 陈洪滨, 王普才, 段树, 章文星 2008 大气科学 32 867]

    [5]

    Messer H, Zinevich A, Alpert P 2006 Science 312 713

    [6]

    Feng G L, Gong Z Q, Zhi R, Zhang D Q 2008 Chin. Phys. B 17 2745

    [7]

    Goldshtein O, Messer H, Zinevich A 2009 IEEE Trans. Signal Proces. 57 1616

    [8]

    Messer H, Zinevich A, Alpert P 2012 IEEE Trans. Instrum. Meas. 15 32

    [9]

    David N, Alpert P, Messer H 2013 Atmos. Res. 131 13

    [10]

    Overeem A, Leijnse H, Uijlenhoet R 2013 Proc. Natl. Acad. Sci. USA 110 2741

    [11]

    Liu X C, Liu L, Gao T C, Ren J P 2013 J. Infrared Millim. Waves 32 379 (in Chinese) [刘西川, 刘磊, 高太长, 任景鹏 2013 红外与毫米波学报 32 379]

    [12]

    Liu X C, Gao T C, Liu L, Zhai D L 2014 Acta Phys. Sin. 63 199201 (in Chinese) [刘西川, 高太长, 刘磊, 翟东力 2014 物理学报 63 199201]

    [13]

    Jiang S T, Gao T C, Liu X C, Liu L, Liu Z T 2013 Acta Phys. Sin. 62 154303 (in Chinese) [姜世泰, 高太长, 刘西川, 刘磊, 刘志田 2013 物理学报 62 154303]

    [14]

    Yin M, Jiang S T, Gao T C, Liu X C, Liang M Y, Ge S R, Cao C K 2015 Meteorol. Sci. Technol. 43 1 (in Chinese) [印敏, 姜世泰, 高太长, 刘西川, 梁妙元, 戈书睿, 曹承堃 2015 气象科技 43 1]

    [15]

    Gao T C, Song K, Liu X C, Yin M, Liu L, Jiang S T 2015 Acta Phys. Sin. 64 174301 (in Chinese) [高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰 2015 物理学报 64 174301]

    [16]

    International Telecommunication Union 2005 Rec. ITU-R P.838-3

    [17]

    Pruppacher H R, Beard K V 1970 J. Quart. J. R. Met. Soc. 96 247

    [18]

    Michael I M, Larry D T 1998 J. Quant. Spectrosc. Radiat. Transfer 60 309

    [19]

    Chen B J, Li Z H, Liu J C, Gong F J 1998 Acta Meteorol. Sin. 56 123 (in Chinese) [陈宝君, 李子华, 刘吉成, 宫福久 1998 气象学报 56 123]

    [20]

    Yuan C, Fan L, Li Y B 2001 J. Nanjing I. Meteorol. 24 250 (in Chinese) [袁成, 樊玲, 李亚滨 2001 南京气象学院学报 24 250]

    [21]

    Zheng J H, Chen B J 2007 J. Meteorol. Sci. 27 17 (in Chinese) [郑娇恒, 陈宝君 2007 气象科学 27 17]

    [22]

    Freeman R 1991 Telecommunications Transmission Handbook (3rd Ed.) (Canda: John Wiley Sons Inc.) p279

    [23]

    Somerville W R C, Auguie B, Ru E C L 2013 J. Quant. Spectrosc. Radiat. Transfer 123 153

    [24]

    David C H, Chu T S 1975 Proc. IEEE 63 1308

    [25]

    Lampton M 1997 Comput. Phys. 11 110

  • [1]

    Gao T C 2012 Meteorol. Hydrol. Eq. 23 1 (in Chinese) [高太长 2012 气象水文装备 23 1]

    [2]

    L D R, Wang P C, Qiu J H, Tao S Y 2003 Chin. J. Atmos. Sci. 27 552 (in Chinese) [吕达仁, 王普才, 邱金恒, 陶诗言 2003 大气科学 27 552]

    [3]

    Liang H H, Xu B X, Liu L P, Ge R S 2005 Adv. Earth Sci. 20 541 (in Chinese) [梁海河, 徐宝祥, 刘黎平, 葛润生 2005 地球科学进展 20 541]

    [4]

    Qie X S, L D R, Chen H B, Wang P C, Duan S, Zhang W X 2008 Chin. J. Atmos. Sci. 32 867 (in Chinese) [郄秀书, 吕达仁, 陈洪滨, 王普才, 段树, 章文星 2008 大气科学 32 867]

    [5]

    Messer H, Zinevich A, Alpert P 2006 Science 312 713

    [6]

    Feng G L, Gong Z Q, Zhi R, Zhang D Q 2008 Chin. Phys. B 17 2745

    [7]

    Goldshtein O, Messer H, Zinevich A 2009 IEEE Trans. Signal Proces. 57 1616

    [8]

    Messer H, Zinevich A, Alpert P 2012 IEEE Trans. Instrum. Meas. 15 32

    [9]

    David N, Alpert P, Messer H 2013 Atmos. Res. 131 13

    [10]

    Overeem A, Leijnse H, Uijlenhoet R 2013 Proc. Natl. Acad. Sci. USA 110 2741

    [11]

    Liu X C, Liu L, Gao T C, Ren J P 2013 J. Infrared Millim. Waves 32 379 (in Chinese) [刘西川, 刘磊, 高太长, 任景鹏 2013 红外与毫米波学报 32 379]

    [12]

    Liu X C, Gao T C, Liu L, Zhai D L 2014 Acta Phys. Sin. 63 199201 (in Chinese) [刘西川, 高太长, 刘磊, 翟东力 2014 物理学报 63 199201]

    [13]

    Jiang S T, Gao T C, Liu X C, Liu L, Liu Z T 2013 Acta Phys. Sin. 62 154303 (in Chinese) [姜世泰, 高太长, 刘西川, 刘磊, 刘志田 2013 物理学报 62 154303]

    [14]

    Yin M, Jiang S T, Gao T C, Liu X C, Liang M Y, Ge S R, Cao C K 2015 Meteorol. Sci. Technol. 43 1 (in Chinese) [印敏, 姜世泰, 高太长, 刘西川, 梁妙元, 戈书睿, 曹承堃 2015 气象科技 43 1]

    [15]

    Gao T C, Song K, Liu X C, Yin M, Liu L, Jiang S T 2015 Acta Phys. Sin. 64 174301 (in Chinese) [高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰 2015 物理学报 64 174301]

    [16]

    International Telecommunication Union 2005 Rec. ITU-R P.838-3

    [17]

    Pruppacher H R, Beard K V 1970 J. Quart. J. R. Met. Soc. 96 247

    [18]

    Michael I M, Larry D T 1998 J. Quant. Spectrosc. Radiat. Transfer 60 309

    [19]

    Chen B J, Li Z H, Liu J C, Gong F J 1998 Acta Meteorol. Sin. 56 123 (in Chinese) [陈宝君, 李子华, 刘吉成, 宫福久 1998 气象学报 56 123]

    [20]

    Yuan C, Fan L, Li Y B 2001 J. Nanjing I. Meteorol. 24 250 (in Chinese) [袁成, 樊玲, 李亚滨 2001 南京气象学院学报 24 250]

    [21]

    Zheng J H, Chen B J 2007 J. Meteorol. Sci. 27 17 (in Chinese) [郑娇恒, 陈宝君 2007 气象科学 27 17]

    [22]

    Freeman R 1991 Telecommunications Transmission Handbook (3rd Ed.) (Canda: John Wiley Sons Inc.) p279

    [23]

    Somerville W R C, Auguie B, Ru E C L 2013 J. Quant. Spectrosc. Radiat. Transfer 123 153

    [24]

    David C H, Chu T S 1975 Proc. IEEE 63 1308

    [25]

    Lampton M 1997 Comput. Phys. 11 110

  • [1] Wu Feng-Chuan, An Qiang, Yao Jia-Wei, Fu Yun-Qi. Research on intrinsic expansion coefficients in Rydberg atomic heterodyne receiving link. Acta Physica Sinica, 2023, 72(4): 047401. doi: 10.7498/aps.72.20222091
    [2] Zhang Tian-Cheng, Chen Di-Na, Li Chun-Yu, Zhang Li-Min, Xu Zu-Yin, Cheng Ai-Qiang, Bao Hua-Guang, Ding Da-Zhi. Efficient field-circuit co-simulation method for GaN-based high power microwave devices. Acta Physica Sinica, 2023, 72(14): 147101. doi: 10.7498/aps.72.20230452
    [3] Chen Fa-Xi, Zhao Kan, Li Bo, Liu Bo, Guo Xin-Xing, Kong Wei-Cheng, Chen Guo-Chao, Guo Bao-Long, Liu Tao, Zhang Shou-Gang. High-precision dual-wavelength time transfer via1085-km telecommunication fiber link. Acta Physica Sinica, 2021, 70(7): 070702. doi: 10.7498/aps.70.20201277
    [4] Tan Suo-Yi, Qi Ming-Ze, Wu Jun, Lu Xin. Link predictability of complex network from spectrum perspective. Acta Physica Sinica, 2020, 69(8): 088901. doi: 10.7498/aps.69.20191817
    [5] Xian Ming-Hao, Liu Xi-Chuan, Yin Min, Song Kun, Gao Tai-Chang. Inversion of vertical rainfall field based on earth-space links. Acta Physica Sinica, 2020, 69(2): 024301. doi: 10.7498/aps.69.20191232
    [6] Ying Kang, Gui You-Zhen, Sun Yan-Guang, Cheng Nan, Xiong Xiao-Feng, Wang Jia-Liang, Yang Fei, Cai Hai-Wen. Key technology of high-precision time frequency transfer via 200 km desert urban fiber link. Acta Physica Sinica, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [7] Lan Fu-Yang, Luo Xiu-Juan, Fan Xue-Wu, Zhang Yu, Chen Ming-Lai, Liu Hui, Jia Hui. Effect of uplink atmospheric wavefront distortion on image quality of sheared-beam imaging. Acta Physica Sinica, 2018, 67(20): 204201. doi: 10.7498/aps.67.20181144
    [8] Li Yong-Jun, Yin Chao, Yu Hui, Liu Zun. Link prediction in microblog retweet network based on maximum entropy model. Acta Physica Sinica, 2016, 65(2): 020501. doi: 10.7498/aps.65.020501
    [9] Li Kai-Yan, Zhao Xing-Qun, Sun Xiao-Han, Wan Sui-Ren. A regular composite feature extraction method for vibration signal pattern recognition in optical fiber link system. Acta Physica Sinica, 2015, 64(5): 054304. doi: 10.7498/aps.64.054304
    [10] Zhou Ya, Wu Zheng-Mao, Fan Li, Sun Bo, He Yang, Xia Guang-Qiong. Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection. Acta Physica Sinica, 2015, 64(20): 204203. doi: 10.7498/aps.64.204203
    [11] Gao Tai-Chang, Song Kun, Liu Xi-Chuan, Yin Min, Liu Lei, Jiang Shi-Tai. Research on the method and experiment of path rainfall intensity inversion using a microwave link. Acta Physica Sinica, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301
    [12] Song Kun, Gao Tai-Chang, Liu Xi-Chuan, Yin Min, Xue Yang. Method and experiment of rainfall intensity inversion using a microwave link based on support vector machine. Acta Physica Sinica, 2015, 64(24): 244301. doi: 10.7498/aps.64.244301
    [13] Zhang Yi, Da Xin-Yu. Rain attenuation prediction at Ka band based on difference stationary timeseries. Acta Physica Sinica, 2014, 63(6): 060203. doi: 10.7498/aps.63.060203
    [14] An Hao, Yan Wei, Zhao Xian-Bin, Wang Shao-Bo, Lü Hua-Ping. Feasibility research on the method of rain rate detection based on space-earth link signals at 1–10 GHz. Acta Physica Sinica, 2013, 62(19): 199201. doi: 10.7498/aps.62.199201
    [15] Jiang Shi-Tai, Gao Tai-Chang, Liu Xi-Chuan, Liu Lei, Liu Zhi-Tian. Investigation of the inversion of rainfall field based on microwave links. Acta Physica Sinica, 2013, 62(15): 154303. doi: 10.7498/aps.62.154303
    [16] Liu Guan-Hui, Pei Li, Ning Ti-Gang, Gao Song, Li Jing, Zhang Yi-Jun. Radio-over-fiber downlink system based on a new polarization-stable millimeter-wave genarator. Acta Physica Sinica, 2012, 61(9): 094205. doi: 10.7498/aps.61.094205
    [17] Liu Liu, Zheng Jian-Yu, Zhang Ming-Jiang, Meng Li-Na, Zhang Zhao-Xia, Wang Yun-Cai. Photonic generation and transmission of chaotic ultra wideband signals. Acta Physica Sinica, 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [18] Li Qi-Liang, Zhu Hai-Dong, Li Yuan-Min, Tang Xiang-Hong, Lin Li-Bin. Cross-phase modulational sideband instability in wavelength-division-multiplexing system with periodic lumped amplifiers. Acta Physica Sinica, 2005, 54(6): 2686-2693. doi: 10.7498/aps.54.2686
    [19] Li Qi-Liang, Zhu Hai-Dong, Tang Xiang-Hong, Li Cheng-Jia, Wang Xiao-Jun, Lin Li-Bin. Cross-phase modulational instability in fiber link wit h an active optical amplifier*. Acta Physica Sinica, 2004, 53(12): 4194-4201. doi: 10.7498/aps.53.4194
    [20] HUANG HUNG-CHIA. THEORY OF COUPLED WAVEGUIDES. Acta Physica Sinica, 1962, 18(1): 27-55. doi: 10.7498/aps.18.27
Metrics
  • Abstract views:  5593
  • PDF Downloads:  140
  • Cited By: 0
Publishing process
  • Received Date:  14 November 2016
  • Accepted Date:  18 March 2017
  • Published Online:  05 August 2017

/

返回文章
返回