搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微波链路的降雨场反演方法研究

姜世泰 高太长 刘西川 刘磊 刘志田

引用本文:
Citation:

基于微波链路的降雨场反演方法研究

姜世泰, 高太长, 刘西川, 刘磊, 刘志田

Investigation of the inversion of rainfall field based on microwave links

Jiang Shi-Tai, Gao Tai-Chang, Liu Xi-Chuan, Liu Lei, Liu Zhi-Tian
PDF
导出引用
  • 本文基于微波雨衰的幂律关系, 研究了使用微波链路反演降雨场的方法, 采用层析技术建立了降雨场反演模型. 并利用SIRT算法与正则化算法实现对降雨场层析反演模型的求解. 数值模拟结果表明, 该模型与反演算法能够较为准确地重建降雨场强度与空间分布特征, 能够提供高时空分辨率的二维降雨强度分布. 因此, 利用微波衰减数据进行降雨探测可以作为常规的雨量计与天气雷达观测手段的有效补充.
    The accurate measurements of rainfall distribution with high spatial and temporal resolution have important implications in meteorology, hydrology, agriculture, environmental policies, flood warning and weather forecasting. Based on the rain-induced power-law attenuation equation, a method is presented to reconstruct the rainfall field using rain-induced attenuation data from microwave links, and a tomographic model is formulated. Simutareous itesative reconstruction technigue (SIRT) algorithm and regularization method are employed in the tomographic model separately. The simulated result shows that the tomographic model and iterative algorithms are able to reconstruct the intensity and features of original rainfall field preferably. The distribution of rain rate with high spatial and temporal resolution is also available. Therefore, rain estimation exploiting microwave attenuation measurement data is a useful complement to traditional rain gauge and radar derived estimations.
    [1]

    Sorooshian S, Aghakouchak A, Arkin P, Eylander J, Foufoula-Georgiou E, Harmon R, Hendrickx J M H, Imam B, Gowski R K, Skahill B, Skofronick-Jackson G 2011 B. Am. Meteorol. Soc. 92 1353

    [2]

    Sorooshian S, Aghakouchak A, Arkin P, Eylander J, Foufoula-Georgiou E, Harmon R, Hendrickx J M H, Imam B, Gowski R K, Skahill B, Skofronick-Jackson G 2011 B. Am. Meteorol. Soc. 92 1271

    [3]

    Liu X C, Gao T C, Qin J, Liu L 2010 Acta Phys. Sin. 59 2156 (in Chinese) [刘西川, 高太长, 秦健, 刘磊 2010 物理学报 59 2156]

    [4]

    Ryde J 1947 Meteorological factors in radio wave propagation London, Britain, April 8,1946, p169

    [5]

    Wexler R, Atlas D 1963 J. Appl. Meteorol. 2 276

    [6]

    Atlas D, Ulbrich C W 1977 J. Appl. Meteorol. 16 1322

    [7]

    Minda H, Nakamura K 2005 J. Atmos. Oceanic Technol. 22 165

    [8]

    Hardaker P J, Holt A R, Goddard J W F 1997 Radio Sci. 32 1785

    [9]

    Holt A R, Kuznetsov G G, Rahimi A R 2003 IEE Proc. -Microw. Antennas Propag. 150 315

    [10]

    Upton G J G, Holt A R, Cummings R J, Rahimi A R, Goddard J W F 2005 Atmos. Res. 77 300

    [11]

    Messer H, Zinevich A, Alpert P 2006 Science 312 713

    [12]

    Zinevich A, Alpert P, Messer H 2008 Adv. Water Resource. 31 1470

    [13]

    Freeman R 1991 Telecommunications Transmission Handbook (3rd Edn.) (Canada: John Wiley & Sons Inc.) p494

    [14]

    Ulaby F T, Moore R K, Fung A K 1981 Microwave Remote Sensing (Vol. 1) (Norwood, MA: Artech House) p279

    [15]

    Olsen R, Rogers D V, Hodge D B 1978 IEEE Trans. Antennas Propag. 26 318

    [16]

    International Telecommunication Union 2005 Rec. p838-3-321

    [17]

    Zhang K, Zhu P P, Huang W X, Yuan Q X, Liu L, Yuan B, Wang J Y, Shu H, Chen B, Liu Y J, Li E R, Liu X S, Wu Z Y 2008 Acta Phys. Sin. 57 3410 (in Chinese) [张凯, 朱佩平, 黄万霞, 袁清习, 刘力, 袁斌, 王寯越, 舒航, 陈博, 刘宜晋, 李恩荣, 刘小松, 吴自玉 2008 物理学报 57 3410]

    [18]

    Zhou W J, Hu W T, Guo L, Xu Q S, Yu Y J 2010 Acta Phys. Sin. 59 8499 (in Chinese) [周文静, 胡文涛, 郭路, 徐强胜, 于瀛洁 2010 物理学报 59 8499]

    [19]

    Messer-Yaron H, Alpert P, Zinevich A, Goldshtein O Patent 20090160700 [2009-06-25]

    [20]

    Zhong J, Huang S X, Du H D, Zhang L 2011 Chin. Phys. B 20 034301

    [21]

    Zhong J, Huang S X, Fei J F, Du H D, Zhang L 2011 Chin. Phys. B 20 064301

  • [1]

    Sorooshian S, Aghakouchak A, Arkin P, Eylander J, Foufoula-Georgiou E, Harmon R, Hendrickx J M H, Imam B, Gowski R K, Skahill B, Skofronick-Jackson G 2011 B. Am. Meteorol. Soc. 92 1353

    [2]

    Sorooshian S, Aghakouchak A, Arkin P, Eylander J, Foufoula-Georgiou E, Harmon R, Hendrickx J M H, Imam B, Gowski R K, Skahill B, Skofronick-Jackson G 2011 B. Am. Meteorol. Soc. 92 1271

    [3]

    Liu X C, Gao T C, Qin J, Liu L 2010 Acta Phys. Sin. 59 2156 (in Chinese) [刘西川, 高太长, 秦健, 刘磊 2010 物理学报 59 2156]

    [4]

    Ryde J 1947 Meteorological factors in radio wave propagation London, Britain, April 8,1946, p169

    [5]

    Wexler R, Atlas D 1963 J. Appl. Meteorol. 2 276

    [6]

    Atlas D, Ulbrich C W 1977 J. Appl. Meteorol. 16 1322

    [7]

    Minda H, Nakamura K 2005 J. Atmos. Oceanic Technol. 22 165

    [8]

    Hardaker P J, Holt A R, Goddard J W F 1997 Radio Sci. 32 1785

    [9]

    Holt A R, Kuznetsov G G, Rahimi A R 2003 IEE Proc. -Microw. Antennas Propag. 150 315

    [10]

    Upton G J G, Holt A R, Cummings R J, Rahimi A R, Goddard J W F 2005 Atmos. Res. 77 300

    [11]

    Messer H, Zinevich A, Alpert P 2006 Science 312 713

    [12]

    Zinevich A, Alpert P, Messer H 2008 Adv. Water Resource. 31 1470

    [13]

    Freeman R 1991 Telecommunications Transmission Handbook (3rd Edn.) (Canada: John Wiley & Sons Inc.) p494

    [14]

    Ulaby F T, Moore R K, Fung A K 1981 Microwave Remote Sensing (Vol. 1) (Norwood, MA: Artech House) p279

    [15]

    Olsen R, Rogers D V, Hodge D B 1978 IEEE Trans. Antennas Propag. 26 318

    [16]

    International Telecommunication Union 2005 Rec. p838-3-321

    [17]

    Zhang K, Zhu P P, Huang W X, Yuan Q X, Liu L, Yuan B, Wang J Y, Shu H, Chen B, Liu Y J, Li E R, Liu X S, Wu Z Y 2008 Acta Phys. Sin. 57 3410 (in Chinese) [张凯, 朱佩平, 黄万霞, 袁清习, 刘力, 袁斌, 王寯越, 舒航, 陈博, 刘宜晋, 李恩荣, 刘小松, 吴自玉 2008 物理学报 57 3410]

    [18]

    Zhou W J, Hu W T, Guo L, Xu Q S, Yu Y J 2010 Acta Phys. Sin. 59 8499 (in Chinese) [周文静, 胡文涛, 郭路, 徐强胜, 于瀛洁 2010 物理学报 59 8499]

    [19]

    Messer-Yaron H, Alpert P, Zinevich A, Goldshtein O Patent 20090160700 [2009-06-25]

    [20]

    Zhong J, Huang S X, Du H D, Zhang L 2011 Chin. Phys. B 20 034301

    [21]

    Zhong J, Huang S X, Fei J F, Du H D, Zhang L 2011 Chin. Phys. B 20 064301

  • [1] 庞维煦, 李宁, 黄孝龙, 康杨, 李灿, 范旭东, 翁春生. 基于分数阶Tikhonov正则化的激光吸收光谱燃烧场二维重建光路优化研究. 物理学报, 2023, 72(3): 037801. doi: 10.7498/aps.72.20221731
    [2] 张天成, 陈迪娜, 李春雨, 张利民, 徐祖银, 成爱强, 包华广, 丁大志. GaN基高功率微波器件高效场路协同分析方法. 物理学报, 2023, 72(14): 147101. doi: 10.7498/aps.72.20230452
    [3] 邢阳光, 彭吉龙, 段紫雯, 闫雷, 李林, 刘越. 太阳极紫外He II 30.4 nm谱线层析成像及其光谱数据反演. 物理学报, 2022, 71(15): 159501. doi: 10.7498/aps.71.20220084
    [4] 李宁, TuXin, 黄孝龙, 翁春生. 基于Tikhonov正则化参数矩阵的激光吸收光谱燃烧场二维重建光路设计方法. 物理学报, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [5] 咸明皓, 刘西川, 印敏, 宋堃, 高太长. 基于星地链路的垂直降雨场反演方法. 物理学报, 2020, 69(2): 024301. doi: 10.7498/aps.69.20191232
    [6] 宋堃, 高太长, 刘西川, 印敏, 薛杨. 基于非球形雨衰模型的微波链路雨强反演方法. 物理学报, 2017, 66(15): 154301. doi: 10.7498/aps.66.154301
    [7] 周娅, 吴正茂, 樊利, 孙波, 何洋, 夏光琼. 基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波. 物理学报, 2015, 64(20): 204203. doi: 10.7498/aps.64.204203
    [8] 毕欣, 黄林, 杜劲松, 齐伟智, 高扬, 荣健, 蒋华北. 脉冲微波辐射场空间分布的热声成像研究. 物理学报, 2015, 64(1): 014301. doi: 10.7498/aps.64.014301
    [9] 高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰. 基于微波链路的路径雨强反演方法及实验研究. 物理学报, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301
    [10] 宋堃, 高太长, 刘西川, 印敏, 薛杨. 基于支持向量机的微波链路雨强反演方法. 物理学报, 2015, 64(24): 244301. doi: 10.7498/aps.64.244301
    [11] 张轶, 达新宇. 基于差分平稳时序的Ka波段雨衰预测. 物理学报, 2014, 63(6): 060203. doi: 10.7498/aps.63.060203
    [12] 安豪, 严卫, 赵现斌, 王少波, 吕华平. 基于1–10GHz空地链路信号的雨强监测方法可行性研究. 物理学报, 2013, 62(19): 199201. doi: 10.7498/aps.62.199201
    [13] 姜文正, 袁业立, 运华, 张彦敏. 海面微波散射场多普勒谱特性研究. 物理学报, 2012, 61(12): 124213. doi: 10.7498/aps.61.124213
    [14] 周文静, 胡文涛, 瞿惠, 朱亮, 于瀛洁. 单幅层析全息图的记录及数据重建. 物理学报, 2012, 61(16): 164212. doi: 10.7498/aps.61.164212
    [15] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理. 物理学报, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [16] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演. 物理学报, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [17] 周文静, 胡文涛, 郭路, 徐强胜, 于瀛洁. 少量投影数字全息层析重建实验研究. 物理学报, 2010, 59(12): 8499-8511. doi: 10.7498/aps.59.8499
    [18] 张亮, 黄思训, 刘宇迪, 钟剑. 变分同化结合广义变分最佳分析对微波散射计资料进行海面风场反演. 物理学报, 2010, 59(4): 2889-2897. doi: 10.7498/aps.59.2889
    [19] 张亮, 黄思训, 钟剑, 杜华栋. 基于降雨率的GMF+RAIN模型构建及在台风风场反演中的应用. 物理学报, 2010, 59(10): 7478-7490. doi: 10.7498/aps.59.7478
    [20] 刘西川, 高太长, 秦健, 刘磊. 降雨对微波传输特性的影响分析. 物理学报, 2010, 59(3): 2156-2162. doi: 10.7498/aps.59.2156
计量
  • 文章访问数:  5340
  • PDF下载量:  659
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-05
  • 修回日期:  2013-04-10
  • 刊出日期:  2013-08-05

/

返回文章
返回