搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非球形雨衰模型的微波链路雨强反演方法

宋堃 高太长 刘西川 印敏 薛杨

引用本文:
Citation:

基于非球形雨衰模型的微波链路雨强反演方法

宋堃, 高太长, 刘西川, 印敏, 薛杨

Method and experiment of path rainfall intensity inversion using a microwave link based on nonspherical rain-induced model

Song Kun, Gao Tai-Chang, Liu Xi-Chuan, Yin Min, Xue Yang
PDF
导出引用
  • 以T矩阵理论、Gamma谱分布为理论基础,基于Pruppacher-Beard降雨粒子模型,对OTT雨滴谱仪的Gamma谱参数历史资料与降雨强度值进行非线性拟合得到具有实地谱分布的幂律系数,建立适合于本地区的雨衰模型,提出了基于非球形雨衰模型的微波链路雨强反演方法,分析了温度对模型幂律系数的影响,并开展了1520 GHz频段的视距微波链路与地面雨滴谱仪的同步观测降雨实验.实验结果表明:反演雨强的相关系数全部高于0.6,最高达到了0.96,RMSE最小值为0.79,累积降雨量的绝对偏差在2.47 mm以内,最小偏差仅为0.28 mm,相对误差低于1.84%.实验结果验证了基于非球形雨衰模型的微波链路雨强反演方法的有效性、准确性和适用性,对于进一步提高微波链路反演降雨精度、改善降水监测效果具有重要意义.
    It is important to measure rainfall accurately with high spatial and temporal resolution in meteorology, hydrology, agriculture industry, environment conservation, flood warning and weather forecasting. The use of attenuated information about microwave propagation in rainfall areas to acquire surface precipitation intensity has been shown to be a practical approach to measuring rainfall in recent years. However, the inversion of a single-frequency link is based on the assumption of rainfall attenuation under a certain frequency condition. Further, obtaining parameters that comply with all rainfall events for the rainfall attenuation model is a challenge, often leading to an overestimation of the rainfall intensity. Therefore, based on extended boundary condition method and Gamma raindrop size distribution, an inversion method of the path rainfall intensity by using a microwave link rain-induced attenuation is proposed in order to improve the accuracy of rainfall measurement by microwave rain-induced attenuation. In this paper, we use the characteristics of an atmospheric attenuation model to eliminate the influence of non-rainfall-caused attenuation on the process of rainfall inversion. On the basis of scattering theory and by utilizing the Gamma raindrop size drop, we use the extended boundary condition method to calculate the characteristics of microwave attenuation for Pruppacher-Beard raindrop shape model. The correction model of rainfall effective attenuation and rainfall inversion model of line-of-sight microwave links are proposed, based on the microwave rain attenuation characteristics and raindrop size distribution statistics. In this paper, we propose 15-20 GHz inversion model of path-average rainfall intensity based on nonspherical rain-induced model by using Levenberg-Marquardt optimization algorithm. Meanwhile, we analyze the variations of parameters of rain-induced model under the condition of different temperatures. Besides, we design a line-of-sight microwave experimental system for measuring the rainfall, and the path average rain rate is inversed by rainfall inversion model, which is compared with an OTT disdrometer. The results show that the correlation coefficient of rain rate inversed by microwave link and that of disdrometer are both higher than 0.6 mostly, and the maximum value is 0.96; the error of accumulated rain amount is less than 2.47 mm, the minimum value is 0.28 mm; the relative error of accumulated rain amount is less than 1.84%, the minimum value is 0.44%. The experimental results validate the feasibility and accuracy of rainfall inversion method proposed in this paper. In addition, the experimental result reflects that rainfall intensity retrieved method based on nonspherical raindrop model has advantages over the method based on spherical raindrop model.
      通信作者: 高太长, 2009gaotc@gmail.com
    • 基金项目: 国家自然科学基金(批准号:41475020,41505135)资助的课题.
      Corresponding author: Gao Tai-Chang, 2009gaotc@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.41475020,41505135).
    [1]

    Gao T C 2012 Meteorol. Hydrol. Eq. 23 1 (in Chinese) [高太长 2012 气象水文装备 23 1]

    [2]

    L D R, Wang P C, Qiu J H, Tao S Y 2003 Chin. J. Atmos. Sci. 27 552 (in Chinese) [吕达仁, 王普才, 邱金恒, 陶诗言 2003 大气科学 27 552]

    [3]

    Liang H H, Xu B X, Liu L P, Ge R S 2005 Adv. Earth Sci. 20 541 (in Chinese) [梁海河, 徐宝祥, 刘黎平, 葛润生 2005 地球科学进展 20 541]

    [4]

    Qie X S, L D R, Chen H B, Wang P C, Duan S, Zhang W X 2008 Chin. J. Atmos. Sci. 32 867 (in Chinese) [郄秀书, 吕达仁, 陈洪滨, 王普才, 段树, 章文星 2008 大气科学 32 867]

    [5]

    Messer H, Zinevich A, Alpert P 2006 Science 312 713

    [6]

    Feng G L, Gong Z Q, Zhi R, Zhang D Q 2008 Chin. Phys. B 17 2745

    [7]

    Goldshtein O, Messer H, Zinevich A 2009 IEEE Trans. Signal Proces. 57 1616

    [8]

    Messer H, Zinevich A, Alpert P 2012 IEEE Trans. Instrum. Meas. 15 32

    [9]

    David N, Alpert P, Messer H 2013 Atmos. Res. 131 13

    [10]

    Overeem A, Leijnse H, Uijlenhoet R 2013 Proc. Natl. Acad. Sci. USA 110 2741

    [11]

    Liu X C, Liu L, Gao T C, Ren J P 2013 J. Infrared Millim. Waves 32 379 (in Chinese) [刘西川, 刘磊, 高太长, 任景鹏 2013 红外与毫米波学报 32 379]

    [12]

    Liu X C, Gao T C, Liu L, Zhai D L 2014 Acta Phys. Sin. 63 199201 (in Chinese) [刘西川, 高太长, 刘磊, 翟东力 2014 物理学报 63 199201]

    [13]

    Jiang S T, Gao T C, Liu X C, Liu L, Liu Z T 2013 Acta Phys. Sin. 62 154303 (in Chinese) [姜世泰, 高太长, 刘西川, 刘磊, 刘志田 2013 物理学报 62 154303]

    [14]

    Yin M, Jiang S T, Gao T C, Liu X C, Liang M Y, Ge S R, Cao C K 2015 Meteorol. Sci. Technol. 43 1 (in Chinese) [印敏, 姜世泰, 高太长, 刘西川, 梁妙元, 戈书睿, 曹承堃 2015 气象科技 43 1]

    [15]

    Gao T C, Song K, Liu X C, Yin M, Liu L, Jiang S T 2015 Acta Phys. Sin. 64 174301 (in Chinese) [高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰 2015 物理学报 64 174301]

    [16]

    International Telecommunication Union 2005 Rec. ITU-R P.838-3

    [17]

    Pruppacher H R, Beard K V 1970 J. Quart. J. R. Met. Soc. 96 247

    [18]

    Michael I M, Larry D T 1998 J. Quant. Spectrosc. Radiat. Transfer 60 309

    [19]

    Chen B J, Li Z H, Liu J C, Gong F J 1998 Acta Meteorol. Sin. 56 123 (in Chinese) [陈宝君, 李子华, 刘吉成, 宫福久 1998 气象学报 56 123]

    [20]

    Yuan C, Fan L, Li Y B 2001 J. Nanjing I. Meteorol. 24 250 (in Chinese) [袁成, 樊玲, 李亚滨 2001 南京气象学院学报 24 250]

    [21]

    Zheng J H, Chen B J 2007 J. Meteorol. Sci. 27 17 (in Chinese) [郑娇恒, 陈宝君 2007 气象科学 27 17]

    [22]

    Freeman R 1991 Telecommunications Transmission Handbook (3rd Ed.) (Canda: John Wiley Sons Inc.) p279

    [23]

    Somerville W R C, Auguie B, Ru E C L 2013 J. Quant. Spectrosc. Radiat. Transfer 123 153

    [24]

    David C H, Chu T S 1975 Proc. IEEE 63 1308

    [25]

    Lampton M 1997 Comput. Phys. 11 110

  • [1]

    Gao T C 2012 Meteorol. Hydrol. Eq. 23 1 (in Chinese) [高太长 2012 气象水文装备 23 1]

    [2]

    L D R, Wang P C, Qiu J H, Tao S Y 2003 Chin. J. Atmos. Sci. 27 552 (in Chinese) [吕达仁, 王普才, 邱金恒, 陶诗言 2003 大气科学 27 552]

    [3]

    Liang H H, Xu B X, Liu L P, Ge R S 2005 Adv. Earth Sci. 20 541 (in Chinese) [梁海河, 徐宝祥, 刘黎平, 葛润生 2005 地球科学进展 20 541]

    [4]

    Qie X S, L D R, Chen H B, Wang P C, Duan S, Zhang W X 2008 Chin. J. Atmos. Sci. 32 867 (in Chinese) [郄秀书, 吕达仁, 陈洪滨, 王普才, 段树, 章文星 2008 大气科学 32 867]

    [5]

    Messer H, Zinevich A, Alpert P 2006 Science 312 713

    [6]

    Feng G L, Gong Z Q, Zhi R, Zhang D Q 2008 Chin. Phys. B 17 2745

    [7]

    Goldshtein O, Messer H, Zinevich A 2009 IEEE Trans. Signal Proces. 57 1616

    [8]

    Messer H, Zinevich A, Alpert P 2012 IEEE Trans. Instrum. Meas. 15 32

    [9]

    David N, Alpert P, Messer H 2013 Atmos. Res. 131 13

    [10]

    Overeem A, Leijnse H, Uijlenhoet R 2013 Proc. Natl. Acad. Sci. USA 110 2741

    [11]

    Liu X C, Liu L, Gao T C, Ren J P 2013 J. Infrared Millim. Waves 32 379 (in Chinese) [刘西川, 刘磊, 高太长, 任景鹏 2013 红外与毫米波学报 32 379]

    [12]

    Liu X C, Gao T C, Liu L, Zhai D L 2014 Acta Phys. Sin. 63 199201 (in Chinese) [刘西川, 高太长, 刘磊, 翟东力 2014 物理学报 63 199201]

    [13]

    Jiang S T, Gao T C, Liu X C, Liu L, Liu Z T 2013 Acta Phys. Sin. 62 154303 (in Chinese) [姜世泰, 高太长, 刘西川, 刘磊, 刘志田 2013 物理学报 62 154303]

    [14]

    Yin M, Jiang S T, Gao T C, Liu X C, Liang M Y, Ge S R, Cao C K 2015 Meteorol. Sci. Technol. 43 1 (in Chinese) [印敏, 姜世泰, 高太长, 刘西川, 梁妙元, 戈书睿, 曹承堃 2015 气象科技 43 1]

    [15]

    Gao T C, Song K, Liu X C, Yin M, Liu L, Jiang S T 2015 Acta Phys. Sin. 64 174301 (in Chinese) [高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰 2015 物理学报 64 174301]

    [16]

    International Telecommunication Union 2005 Rec. ITU-R P.838-3

    [17]

    Pruppacher H R, Beard K V 1970 J. Quart. J. R. Met. Soc. 96 247

    [18]

    Michael I M, Larry D T 1998 J. Quant. Spectrosc. Radiat. Transfer 60 309

    [19]

    Chen B J, Li Z H, Liu J C, Gong F J 1998 Acta Meteorol. Sin. 56 123 (in Chinese) [陈宝君, 李子华, 刘吉成, 宫福久 1998 气象学报 56 123]

    [20]

    Yuan C, Fan L, Li Y B 2001 J. Nanjing I. Meteorol. 24 250 (in Chinese) [袁成, 樊玲, 李亚滨 2001 南京气象学院学报 24 250]

    [21]

    Zheng J H, Chen B J 2007 J. Meteorol. Sci. 27 17 (in Chinese) [郑娇恒, 陈宝君 2007 气象科学 27 17]

    [22]

    Freeman R 1991 Telecommunications Transmission Handbook (3rd Ed.) (Canda: John Wiley Sons Inc.) p279

    [23]

    Somerville W R C, Auguie B, Ru E C L 2013 J. Quant. Spectrosc. Radiat. Transfer 123 153

    [24]

    David C H, Chu T S 1975 Proc. IEEE 63 1308

    [25]

    Lampton M 1997 Comput. Phys. 11 110

  • [1] 吴逢川, 安强, 姚佳伟, 付云起. 里德堡原子超外差接收链路中的内禀增益系数研究. 物理学报, 2023, 72(4): 047401. doi: 10.7498/aps.72.20222091
    [2] 张天成, 陈迪娜, 李春雨, 张利民, 徐祖银, 成爱强, 包华广, 丁大志. GaN基高功率微波器件高效场路协同分析方法. 物理学报, 2023, 72(14): 147101. doi: 10.7498/aps.72.20230452
    [3] 陈法喜, 赵侃, 李博, 刘博, 郭新兴, 孔维成, 陈国超, 郭宝龙, 刘涛, 张首刚. 基于1085 km实地光纤链路的双波长光纤时间同步研究. 物理学报, 2021, 70(7): 070702. doi: 10.7498/aps.70.20201277
    [4] 谭索怡, 祁明泽, 吴俊, 吕欣. 复杂网络链路可预测性: 基于特征谱视角. 物理学报, 2020, 69(8): 088901. doi: 10.7498/aps.69.20191817
    [5] 咸明皓, 刘西川, 印敏, 宋堃, 高太长. 基于星地链路的垂直降雨场反演方法. 物理学报, 2020, 69(2): 024301. doi: 10.7498/aps.69.20191232
    [6] 应康, 桂有珍, 孙延光, 程楠, 熊晓锋, 王家亮, 杨飞, 蔡海文. 200 km沙漠链路高精度光纤时频传递关键技术研究. 物理学报, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [7] 兰富洋, 罗秀娟, 樊学武, 张羽, 陈明徕, 刘辉, 贾辉. 上行链路大气波前畸变对剪切光束成像技术的影响. 物理学报, 2018, 67(20): 204201. doi: 10.7498/aps.67.20181144
    [8] 李勇军, 尹超, 于会, 刘尊. 基于最大熵模型的微博传播网络中的链路预测. 物理学报, 2016, 65(2): 020501. doi: 10.7498/aps.65.020501
    [9] 李凯彦, 赵兴群, 孙小菡, 万遂人. 一种用于光纤链路振动信号模式识别的规整化复合特征提取方法. 物理学报, 2015, 64(5): 054304. doi: 10.7498/aps.64.054304
    [10] 周娅, 吴正茂, 樊利, 孙波, 何洋, 夏光琼. 基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波. 物理学报, 2015, 64(20): 204203. doi: 10.7498/aps.64.204203
    [11] 高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰. 基于微波链路的路径雨强反演方法及实验研究. 物理学报, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301
    [12] 宋堃, 高太长, 刘西川, 印敏, 薛杨. 基于支持向量机的微波链路雨强反演方法. 物理学报, 2015, 64(24): 244301. doi: 10.7498/aps.64.244301
    [13] 张轶, 达新宇. 基于差分平稳时序的Ka波段雨衰预测. 物理学报, 2014, 63(6): 060203. doi: 10.7498/aps.63.060203
    [14] 安豪, 严卫, 赵现斌, 王少波, 吕华平. 基于1–10GHz空地链路信号的雨强监测方法可行性研究. 物理学报, 2013, 62(19): 199201. doi: 10.7498/aps.62.199201
    [15] 姜世泰, 高太长, 刘西川, 刘磊, 刘志田. 基于微波链路的降雨场反演方法研究. 物理学报, 2013, 62(15): 154303. doi: 10.7498/aps.62.154303
    [16] 刘观辉, 裴丽, 宁提纲, 高嵩, 李晶, 张义军. 基于新型偏振稳定毫米波发生器的光载无线通信下行链路. 物理学报, 2012, 61(9): 094205. doi: 10.7498/aps.61.094205
    [17] 刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才. 混沌超宽带信号的光学产生及其链路传输. 物理学报, 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [18] 李齐良, 朱海东, 李院民, 唐向宏, 林理彬. 集总式放大波分复用链路中交叉相位调制的边带不稳定性. 物理学报, 2005, 54(6): 2686-2693. doi: 10.7498/aps.54.2686
    [19] 李齐良, 朱海东, 唐向宏, 李承家, 王小军, 林理彬. 有源光放大器链路中交叉相位调制的不稳定性. 物理学报, 2004, 53(12): 4194-4201. doi: 10.7498/aps.53.4194
    [20] 黄宏嘉. 微波强耦合论. 物理学报, 1962, 18(1): 27-55. doi: 10.7498/aps.18.27
计量
  • 文章访问数:  4701
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-14
  • 修回日期:  2017-03-18
  • 刊出日期:  2017-08-05

/

返回文章
返回