Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study of Rayleigh-Taylor instability by using smoothed particle hydrodynamics

Yang Xiu-Feng Liu Mou-Bin

Citation:

Numerical study of Rayleigh-Taylor instability by using smoothed particle hydrodynamics

Yang Xiu-Feng, Liu Mou-Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we present a smoothed particle hydrodynamics (SPH) method for modeling multiphase flows. The multiphase SPH method includes a corrective discretization scheme for density approximation around the fluid interface to treat large density ratio, a small repulsive force between particles from different phases to prevent particles from unphysically penetrating fluid interface, and a newly-developed hyperbolic-shaped kernel function to remove possible stress instability. This multiphase SPH method is then used to study the single-and multi-mode Rayleigh-Taylor instability problems. A comparison between our results with the results from existing literature shows that our results are obviously better than most available results from other SPH simulations. The present results are close to those by Grenier et al. while the present multiphase SPH method is simpler and easier to implement than that in the work by Grenier et al. (Grenier, et al. 2009 J. Comput. Phys. 228 8380). For the single-mode Rayleigh-Taylor instability, the evolutions of the interface pattern and vortex structures, and the penetration depth each as a function of time are investigated. For the multi-mode Rayleigh-Taylor instability, the merging of small structures into a large structure during the evolution of the interface is studied. The horizontal average density and the penetration each as a function of height are also studied.
      Corresponding author: Liu Mou-Bin, mbliu@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11302237, U1530110).
    [1]

    Rayleigh L 1883 Proc. Lond. Math. Soc. 14 170

    [2]

    Taylor G 1950 Proc. Roy. Soc. A:Math. Phys. 201 192

    [3]

    Lewis D J 1950 Proc. Roy. Soc. A:Math. Phys. 202 81

    [4]

    Tryggvason G 1988 J. Comput. Phys. 75 253

    [5]

    Banerjee R, Kanjilal S 2015 J. Pure Appl. Ind. Phys. 5 73

    [6]

    Sharp D H 1984 Physica D 12 3

    [7]

    Kilkenny J, Glendinning S, Haan S, Hammel B, Lindl J, Munro D, Remington B, Weber S, Knauer J, Verdon C 1994 Phys. Plasmas 1 1379

    [8]

    Huang C S, Kelley M, Hysell D 1993 J. Geophys. Res.-Space Physics 98 15631

    [9]

    Alon U, Hecht J, Ofer D, Shvarts D 1995 Phys. Rev. Lett. 74 534

    [10]

    Dimonte G 2000 Phys. Plasmas 7 2255

    [11]

    Ramshaw J D 1998 Phys. Rev. E 58 5834

    [12]

    Glimm J, Saltz D, Sharp D H 1998 Phys. Rev. Lett. 80 712

    [13]

    Cheng B, Glimm J, Sharp D 2002 Phys. Rev. E 66 036312

    [14]

    Zhang Y S, He Z W, Gao F J, Li X L, Tian B L 2016 Phys. Rev. E 93 063102

    [15]

    He X, Chen S, Zhang R 1999 J. Comput. Phys. 152 642

    [16]

    Kadau K, Barber J L, Germann T C, Holian B L, Alder B J 2010 Phil. Trans. R. Soc. A 368 1547

    [17]

    Ramaprabhu P, Karkhanis V, Banerjee R, Varshochi H, Khan M, Lawrie A 2016 Phys. Rev. E 93 013118

    [18]

    Sagert I, Howell J, Staber A, Strother T, Colbry D, Bauer W 2015 Phys. Rev. E 92 013009

    [19]

    Liang H, Li Q, Shi B, Chai Z 2016 Phys. Rev. E 93 033113

    [20]

    Lucy L B 1977 Astron. J. 82 1013

    [21]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [22]

    Yang X, Peng S, Liu M, Shao J 2012 Int. J. Comp. Meth.-Sing 9 1240002

    [23]

    Yang X F, Peng S L, Liu M B 2014 Appl. Math. Model 38 3822

    [24]

    Yang X, Dai L, Kong S C 2017 Proc. Combust. Inst. 36 2393

    [25]

    Yang X F, Liu M B 2012 Acta Phys. Sin. 61 224701 (in Chinese)[杨秀峰, 刘谋斌2012物理学报61 224701]

    [26]

    Yang X F, Liu M B, Peng S 2014 Comput. Fluids 92 199

    [27]

    Monaghan J J 1992 Ann. Rev. Astron. Astrophys. 30 543

    [28]

    Monaghan J J 2000 J. Comput. Phys. 159 290

    [29]

    Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B 2009 J. Comput. Phys. 228 8380

    [30]

    Yang X, Liu M 2013 Sci. China:Phys. Mech. Astron. 56 315

    [31]

    Bonet J, Lok T S 1999 Comput. Methods Appl. Mech. Engrg. 180 97

    [32]

    Colagrossi A, Landrini M 2003 J. Comput. Phys. 191 448

    [33]

    Chen Z, Zong Z, Liu M, Zou L, Li H, Shu C 2015 J. Comput. Phys. 283 169

    [34]

    Monaghan J, Rafiee A 2013 Int. J. Numerical Mech. Fluids 71 537

    [35]

    Hu X Y, Adams N A 2009 J. Comput. Phys. 228 2082

    [36]

    Yang X F, Liu M B 2016 Chin. J. Comput. Mech. 33 594(in Chinese)[杨秀峰, 刘谋斌2016计算力学学报33 594]

    [37]

    Layzer D 1955 Astrophys. J. 122 1

  • [1]

    Rayleigh L 1883 Proc. Lond. Math. Soc. 14 170

    [2]

    Taylor G 1950 Proc. Roy. Soc. A:Math. Phys. 201 192

    [3]

    Lewis D J 1950 Proc. Roy. Soc. A:Math. Phys. 202 81

    [4]

    Tryggvason G 1988 J. Comput. Phys. 75 253

    [5]

    Banerjee R, Kanjilal S 2015 J. Pure Appl. Ind. Phys. 5 73

    [6]

    Sharp D H 1984 Physica D 12 3

    [7]

    Kilkenny J, Glendinning S, Haan S, Hammel B, Lindl J, Munro D, Remington B, Weber S, Knauer J, Verdon C 1994 Phys. Plasmas 1 1379

    [8]

    Huang C S, Kelley M, Hysell D 1993 J. Geophys. Res.-Space Physics 98 15631

    [9]

    Alon U, Hecht J, Ofer D, Shvarts D 1995 Phys. Rev. Lett. 74 534

    [10]

    Dimonte G 2000 Phys. Plasmas 7 2255

    [11]

    Ramshaw J D 1998 Phys. Rev. E 58 5834

    [12]

    Glimm J, Saltz D, Sharp D H 1998 Phys. Rev. Lett. 80 712

    [13]

    Cheng B, Glimm J, Sharp D 2002 Phys. Rev. E 66 036312

    [14]

    Zhang Y S, He Z W, Gao F J, Li X L, Tian B L 2016 Phys. Rev. E 93 063102

    [15]

    He X, Chen S, Zhang R 1999 J. Comput. Phys. 152 642

    [16]

    Kadau K, Barber J L, Germann T C, Holian B L, Alder B J 2010 Phil. Trans. R. Soc. A 368 1547

    [17]

    Ramaprabhu P, Karkhanis V, Banerjee R, Varshochi H, Khan M, Lawrie A 2016 Phys. Rev. E 93 013118

    [18]

    Sagert I, Howell J, Staber A, Strother T, Colbry D, Bauer W 2015 Phys. Rev. E 92 013009

    [19]

    Liang H, Li Q, Shi B, Chai Z 2016 Phys. Rev. E 93 033113

    [20]

    Lucy L B 1977 Astron. J. 82 1013

    [21]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [22]

    Yang X, Peng S, Liu M, Shao J 2012 Int. J. Comp. Meth.-Sing 9 1240002

    [23]

    Yang X F, Peng S L, Liu M B 2014 Appl. Math. Model 38 3822

    [24]

    Yang X, Dai L, Kong S C 2017 Proc. Combust. Inst. 36 2393

    [25]

    Yang X F, Liu M B 2012 Acta Phys. Sin. 61 224701 (in Chinese)[杨秀峰, 刘谋斌2012物理学报61 224701]

    [26]

    Yang X F, Liu M B, Peng S 2014 Comput. Fluids 92 199

    [27]

    Monaghan J J 1992 Ann. Rev. Astron. Astrophys. 30 543

    [28]

    Monaghan J J 2000 J. Comput. Phys. 159 290

    [29]

    Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B 2009 J. Comput. Phys. 228 8380

    [30]

    Yang X, Liu M 2013 Sci. China:Phys. Mech. Astron. 56 315

    [31]

    Bonet J, Lok T S 1999 Comput. Methods Appl. Mech. Engrg. 180 97

    [32]

    Colagrossi A, Landrini M 2003 J. Comput. Phys. 191 448

    [33]

    Chen Z, Zong Z, Liu M, Zou L, Li H, Shu C 2015 J. Comput. Phys. 283 169

    [34]

    Monaghan J, Rafiee A 2013 Int. J. Numerical Mech. Fluids 71 537

    [35]

    Hu X Y, Adams N A 2009 J. Comput. Phys. 228 2082

    [36]

    Yang X F, Liu M B 2016 Chin. J. Comput. Mech. 33 594(in Chinese)[杨秀峰, 刘谋斌2016计算力学学报33 594]

    [37]

    Layzer D 1955 Astrophys. J. 122 1

  • [1] Analytical studies of Rayleigh-Taylor instability growth in 2020 DCI winter experimental campaign. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211172
    [2] Zhao Kai-Ge, Xue Chuang, Wang Li-Feng, Ye Wen-Hua, Wu Jun-Feng, Ding Yong-Kun, Zhang Wei-Yan, He Xian-Tu. Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface. Acta Physica Sinica, 2018, 67(9): 094701. doi: 10.7498/aps.67.20172613
    [3] Xu Hao, Wang Cong, Lu Hong-Zhi, Huang Wen-Hu. Experimental study on submerged supersonic gaseous jet induced tail cavity. Acta Physica Sinica, 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [4] Li Yang, Su Ting, Liang Hong, Xu Jiang-Rong. Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [5] Zhang Hai-Chao, Zheng Dan-Chen, Bian Mao-Song, Han Min. A fluid simulation method based on two-dimensional smoothed particle hydrodynamics. Acta Physica Sinica, 2016, 65(24): 244701. doi: 10.7498/aps.65.244701
    [6] Sun Peng-Nan, Li Yun-Bo, Ming Fu-Ren. Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [7] Song Bao-Wei, Ren Feng, Hu Hai-Bao, Guo Yun-He. Drag reduction on micro-structured hydrophobic surfaces due to surface tension effect. Acta Physica Sinica, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [8] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [9] Qiang Hong-Fu, Shi Chao, Chen Fu-Zhen, Han Ya-Wei. Simulation of two-dimensional droplet collisions based on SPH method of multi-phase flows with large density differences. Acta Physica Sinica, 2013, 62(21): 214701. doi: 10.7498/aps.62.214701
    [10] Ming Fu-Ren, Zhang A-Man, Yao Xiong-Liang. Static and dynamic analysis of elastic shell structures with smoothed particle method. Acta Physica Sinica, 2013, 62(11): 110203. doi: 10.7498/aps.62.110203
    [11] Liu Han-Tao, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong. Dissipative particle dynamics simulation of multiphase flow through a mesoscopic channel. Acta Physica Sinica, 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [12] Yang Xiu-Feng, Liu Mou-Bin. Improvement on stress instability in smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [13] Fang Zhi-Heng, Wang Wei, Jia Guo, Dong Jia-Qin, Xiong Jun, Zheng Wu-Di, Li Yong-Sheng, Luo Ping-Qing, Fu Si-Zu, Gu Yuan, Wang Shi-Ji. Imprinting and consequent Rayleigh-Taylor growth. Acta Physica Sinica, 2009, 58(10): 7057-7061. doi: 10.7498/aps.58.7057
    [14] Chang Jian-Zhong, Liu Mou-Bin, Liu Han-Tao. Simulation of multiphase micro-drop dynamics using dissipative particle dynamics. Acta Physica Sinica, 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
    [15] Chen Yan-Ping, Wang Chuan-Bing, Zhou Guo-Cheng. Maser instability driven by an electron beam with losscone-beam distribution. Acta Physica Sinica, 2005, 54(7): 3221-3227. doi: 10.7498/aps.54.3221
    [16] Wu Jun-Feng, ]Ye Wen-Hua, Zhang Wei-Yan, He Xian-Tu. Nonlinear threshold of two-dimensional Rayleigh-Taylor growth for incompressible liquid. Acta Physica Sinica, 2003, 52(7): 1688-1693. doi: 10.7498/aps.52.1688
    [17] Ye Wen-Hua, Zhang Wei-Yan, He Xian-Shi. . Acta Physica Sinica, 2000, 49(4): 762-767. doi: 10.7498/aps.49.762
    [18] NIE XIAO-BO, ZHANG ZHONG-ZHEN, FU HONG-YUAN, SHEN LONG-JUN, WANG JI-HAI. SIMULATION OF RAYLEIGH-TAYLOR INSTABILITY BY THE LATTICE BOLTZMANN MODEL. Acta Physica Sinica, 1997, 46(8): 1508-1516. doi: 10.7498/aps.46.1508
    [19] SHI CHANG-HE. MAGNETOHYDRODYNAMIC INSTABILITY OF A NONHOMOGE-NEOUS PLASMA LAMINAR STREAM. Acta Physica Sinica, 1979, 28(2): 263-267. doi: 10.7498/aps.28.263
    [20] . Acta Physica Sinica, 1965, 21(9): 1700-1704. doi: 10.7498/aps.21.1700
Metrics
  • Abstract views:  6178
  • PDF Downloads:  233
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2017
  • Accepted Date:  02 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回