Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Bragg periods per grating period on performance of Bragg concave diffraction grating

Du Bing-Zheng Zhu Jing-Ping Mao Yu-Zheng Liu Hong Wang Kai Hou Xun

Citation:

Effects of Bragg periods per grating period on performance of Bragg concave diffraction grating

Du Bing-Zheng, Zhu Jing-Ping, Mao Yu-Zheng, Liu Hong, Wang Kai, Hou Xun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Concave diffraction gratings (CDGs) have the advantages of being compact, time reliability, cost effective, and channel spacing accuracy. These devices can be used in the wavelength division multiplexing (WDM) systems and micro-spectrometer devices. However, comparing with arrayed waveguides gratings (AWGs), the development of traditional CDGs is far from satisfactory. Because the traditional CDGs need deeply etched facets and perfect grating profiles to reduce the insertion losses, which will increase the difficulty in etching process. In order to solve this problem, Bragg reflectors based CDGs (Bragg-CDGs) are proposed. This structure can greatly reduce the insertion loss, and reduce the difficulty in etching process. The performance of the Bragg-CDG is determined by both the reflection condition of the Bragg reflectors and the diffraction condition of the CDG. With the Bragg reflection condition determined, the diffraction condition of Bragg-CDG will have a major influence on the performance of device. For successive strips based Bragg-CDG, the number of Bragg periods per diffraction grating period is an important parameter of Bragg-CDG. The diffraction condition of concave gratings is closely related to this parameter. This parameter has an effect on the performance of Bragg-CDG, specially termed resolution, the free spectrum range, and the diffraction efficiency. The effect of the number of Bragg periods per diffraction grating period on the Bragg diffraction grating is studied by theoretical analysis. In addition, four Bragg-CDGs with different numbers of Bragg periods are studied using the finite-difference time domain method. The results show that with sizes of diffraction gratings fixed, the resolution of Bragg-CDG does not have a significant improvement by changing the number of Bragg periods per diffraction grating period; the total number of diffraction orders is proportional to the number of Bragg periods per diffraction grating period. The Bragg-CDG with a single Bragg period per grating period has a maximum diffraction efficiency, since it has the minimal number of diffraction orders; in addition, with the increase of the number of Bragg periods per diffraction grating period, the free spectrum range of the main diffraction order gradually decreases. This research can contribute to the development of the demultiplexer with the low insertion loss, the high resolution, and the wide operating waveband.
      Corresponding author: Zhu Jing-Ping, jpzhu@xjtu.edu.cn
    • Funds: Project supported by the Key Research and Development Plan of Jiangsu Province, China (Grant No. BE2016133).
    [1]

    Yebo N A, Bogaerts W, Hens Z, Baets R 2011 IEEE Photon. Technol. Lett. 23 1505

    [2]

    Estevez M, Alvarez M, Lechuga L 2012 Laser Photon. Rev. 6 463

    [3]

    de Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R 2007 Opt. Express 15 7610

    [4]

    Lam C F 2011 Passive Optical Networks: Principles and Practice (London: Academic Press) pp71-73

    [5]

    McGreer K A 1998 IEEE Commun. Mag. 36 62

    [6]

    Hill K O, Meltz G 1997 IEEE J. Lightwave Tech. 15 1263

    [7]

    Gerken M, Miller D A B 2003 IEEE Photon. Technol. Lett. 15 1097

    [8]

    Horst F, Green W M, Assefa S, Shank S M, Vlasov Y A, Offrein B J 2013 Opt. Express 21 11652

    [9]

    Smit M K, van Dam C 1996 IEEE J. Sel. Top. Quantum Electron. 2 236

    [10]

    Li K L, An J M, Zhang J S, et al. 2016 Chin. Phys. B 25 124209

    [11]

    Koteles E S 1999 Fiber Integr. Opt. 18 211

    [12]

    Pathak S, Dumon P, van Thourhout D, Bogaerts W 2014 IEEE Photon. J. 6 1

    [13]

    He J J, Lamontagne B, Delge A, Erickson L, Davies M, Koteles E S 1998 IEEE J. Lightwave Tech. 16 631

    [14]

    Erickson L, Lamontagne B, He J J, Delage A, Davies M, Koteles E 1997 Advanced Semiconductor Lasers and Applications Montreal, Canada, August 11-13, 1997 p82

    [15]

    Brouckaert J, Bogaerts W, Dumon P, van Thourhout D, Baets R 2007 IEEE J. Lightwave Tech. 25 1269

    [16]

    Song J, He S 2004 J. Opt. A: Pure Appl. Opt. 6 769

    [17]

    Brouckaert J, Bogaerts W, Selvaraja S, Dumon P, Baets R, van Thourhout D 2008 IEEE Photon. Technol. Lett. 20 309

    [18]

    Jafari A, Kirk A G 2011 IEEE Photon. J. 3 651

    [19]

    Pottier P, Packirisamy M 2012 IEEE J. Lightwave Tech. 30 2922

    [20]

    Li B, Zhu J P, Du B Z (in Chinese) [ 李宝, 朱京平, 杜炳政 2014 物理学报 63 194209]

    [21]

    Du B, Zhu J, Mao Y, Li B, Zhang Y, Hou X 2017 Opt. Commun. 385 92

    [22]

    Wang H, Li Y P 2001 Acta Phys. Sin. 50 2172 (in Chinese) [王辉, 李永平 2001 物理学报 50 2172]

    [23]

    Fink Y 1998 Science 282 1679

    [24]

    Li R, Ren K, Ren X B, Zhou J, Liu D H 2004 Acta Phys. Sin. 53 2520 (in Chinese) [李蓉, 任坤, 任晓斌, 周静, 刘大禾 2004 物理学报 53 2520]

    [25]

    Hutley M C 1982 Diffraction Gragting (Techniques of Physics: 6) (London: Academic Press) pp215-221

  • [1]

    Yebo N A, Bogaerts W, Hens Z, Baets R 2011 IEEE Photon. Technol. Lett. 23 1505

    [2]

    Estevez M, Alvarez M, Lechuga L 2012 Laser Photon. Rev. 6 463

    [3]

    de Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R 2007 Opt. Express 15 7610

    [4]

    Lam C F 2011 Passive Optical Networks: Principles and Practice (London: Academic Press) pp71-73

    [5]

    McGreer K A 1998 IEEE Commun. Mag. 36 62

    [6]

    Hill K O, Meltz G 1997 IEEE J. Lightwave Tech. 15 1263

    [7]

    Gerken M, Miller D A B 2003 IEEE Photon. Technol. Lett. 15 1097

    [8]

    Horst F, Green W M, Assefa S, Shank S M, Vlasov Y A, Offrein B J 2013 Opt. Express 21 11652

    [9]

    Smit M K, van Dam C 1996 IEEE J. Sel. Top. Quantum Electron. 2 236

    [10]

    Li K L, An J M, Zhang J S, et al. 2016 Chin. Phys. B 25 124209

    [11]

    Koteles E S 1999 Fiber Integr. Opt. 18 211

    [12]

    Pathak S, Dumon P, van Thourhout D, Bogaerts W 2014 IEEE Photon. J. 6 1

    [13]

    He J J, Lamontagne B, Delge A, Erickson L, Davies M, Koteles E S 1998 IEEE J. Lightwave Tech. 16 631

    [14]

    Erickson L, Lamontagne B, He J J, Delage A, Davies M, Koteles E 1997 Advanced Semiconductor Lasers and Applications Montreal, Canada, August 11-13, 1997 p82

    [15]

    Brouckaert J, Bogaerts W, Dumon P, van Thourhout D, Baets R 2007 IEEE J. Lightwave Tech. 25 1269

    [16]

    Song J, He S 2004 J. Opt. A: Pure Appl. Opt. 6 769

    [17]

    Brouckaert J, Bogaerts W, Selvaraja S, Dumon P, Baets R, van Thourhout D 2008 IEEE Photon. Technol. Lett. 20 309

    [18]

    Jafari A, Kirk A G 2011 IEEE Photon. J. 3 651

    [19]

    Pottier P, Packirisamy M 2012 IEEE J. Lightwave Tech. 30 2922

    [20]

    Li B, Zhu J P, Du B Z (in Chinese) [ 李宝, 朱京平, 杜炳政 2014 物理学报 63 194209]

    [21]

    Du B, Zhu J, Mao Y, Li B, Zhang Y, Hou X 2017 Opt. Commun. 385 92

    [22]

    Wang H, Li Y P 2001 Acta Phys. Sin. 50 2172 (in Chinese) [王辉, 李永平 2001 物理学报 50 2172]

    [23]

    Fink Y 1998 Science 282 1679

    [24]

    Li R, Ren K, Ren X B, Zhou J, Liu D H 2004 Acta Phys. Sin. 53 2520 (in Chinese) [李蓉, 任坤, 任晓斌, 周静, 刘大禾 2004 物理学报 53 2520]

    [25]

    Hutley M C 1982 Diffraction Gragting (Techniques of Physics: 6) (London: Academic Press) pp215-221

  • [1] Cao Ruo-Lin, Peng Qing-Xuan, Wang Jin-Dong, Chen Yong-Jie, Huang Yun-Fei, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Real-time polarization compensation system for wavelength division multiplexing in low noise fiber channel based on single photon counting feedback. Acta Physica Sinica, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [2] Sang Di, Xu Ming-Feng, An Qiang, Fu Yun-Qi. Freeform wavelength division multiplexing metagrating based on topology optimization. Acta Physica Sinica, 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [3] Ying Kang, Gui You-Zhen, Sun Yan-Guang, Cheng Nan, Xiong Xiao-Feng, Wang Jia-Liang, Yang Fei, Cai Hai-Wen. Key technology of high-precision time frequency transfer via 200 km desert urban fiber link. Acta Physica Sinica, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [4] Li Ning, Lü Xiao-Jing, Jing Weng. Laser intensity and absorbance measurements by tunable diode laser absorption spectroscopy based on non-line fitting algorithm. Acta Physica Sinica, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [5] Cui Lu, Tang Yi, Zhu Qing-Wei, Luo Jia-Bin, Hu Shan-Shan. Analysis of channel crosstalk in muliti-spectrum visible light communication system. Acta Physica Sinica, 2016, 65(9): 094208. doi: 10.7498/aps.65.094208
    [6] Li Jin-Yang, Lu Dan-Feng, Qi Zhi-Mei. End-face reflected LiNbO3 waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution. Acta Physica Sinica, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [7] Li Bao, Du Bing-Zheng, Zhu Jing-Ping. Study on planar concave diffraction grating with Bragg reflector facets. Acta Physica Sinica, 2015, 64(15): 154211. doi: 10.7498/aps.64.154211
    [8] Zhang Jia, Xu Xu-Ming, He Ling-Juan, Yu Tian-Bao, Guo Hao. Four-wavelength multiplexer/demultiplexer based on photonic crystal resonant coupling. Acta Physica Sinica, 2012, 61(5): 054213. doi: 10.7498/aps.61.054213
    [9] Ye Tao, Xu Xu-Ming. The design and optimization of high efficiency heterostructure four-wavelength wavelength division multiplexing. Acta Physica Sinica, 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [10] Zhang Jian-Zhong, Wang An-Bang, Wang Yun-Cai. Wavelength division multiplexing of chaotic optical communication and OC-48 fiber communication. Acta Physica Sinica, 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [11] Liu Dan, Ma Ren-Min, Wang Fei-Fei, Zhang Zeng-Xing, Zhang Zhen-Sheng, Zhang Xue-Jin, Wang Xiao, Bai Yong-Qiang, Zhu Xing, Dai Lun, Zhang Bei. The light source, optical waveguide and light enhancement of nano-integrated optical circuit. Acta Physica Sinica, 2008, 57(1): 371-381. doi: 10.7498/aps.57.371
    [12] Li Qi-Liang, Sun Li-Li, Chen Jun-Lang, Li Qing-Shan, Tang Xiang-Hong, Qian Sheng, Lin Li-Bin. Theoretical analysis of cross-phase modulational sideband instability in wavelength-division multiplexed system with periodic dispersion managed fiber links. Acta Physica Sinica, 2007, 56(2): 805-810. doi: 10.7498/aps.56.805
    [13] Li Qi-Liang, Zhu Hai-Dong, Li Yuan-Min, Tang Xiang-Hong, Lin Li-Bin. Cross-phase modulational sideband instability in wavelength-division-multiplexing system with periodic lumped amplifiers. Acta Physica Sinica, 2005, 54(6): 2686-2693. doi: 10.7498/aps.54.2686
    [14] Tan Zhong-Wei, Zheng Kai, Liu Yan, Fu Yong-Jun, Chen Yong, Cao Ji-Hong, Ning Ti-Gang, Dong Xiao-Wei, Ma Li-Na, Jian Shui-Sheng. Application of dispersion compensator based on chirped fiber gratings in ultra long-hual DWDM system. Acta Physica Sinica, 2005, 54(11): 5218-5223. doi: 10.7498/aps.54.5218
    [15] Qin Xiao-Yun, Huang Bi-Qin, Chen Hai-Xing, Yang Li-Gong, Gu Pei-Fu. Wavelength demultiplexer using the spatial dispersion of repeated-period double-chirped structures*. Acta Physica Sinica, 2004, 53(11): 3794-3799. doi: 10.7498/aps.53.3794
    [16] Zhou Chuan-Hong, Wang Lei, Nei Ya, Wang Zhi-Heng. . Acta Physica Sinica, 2002, 51(1): 68-73. doi: 10.7498/aps.51.68
    [17] GONG JIA-MIN, LIU JUAN, FANG QIANG, WANG YONG-CHANG. THE ANALYTICAL MODEL OF SRS IN SINGLE-MODE SILICA FIBER IN DENSITY WAVELENGTH DI VISION MULTIPLEXED OPTICAL COMMUNICATION SYSTEM. Acta Physica Sinica, 2000, 49(7): 1287-1291. doi: 10.7498/aps.49.1287
    [18] Kong Jia-min, Fang Qiang, Liu Juan, Wang Yong-Chang. . Acta Physica Sinica, 2000, 49(3): 449-454. doi: 10.7498/aps.49.449
    [19] WU XIAO-PING, FAN CHAO-YANG, ZHOU WEN. Y-G ALGORITHM USED IN WDM. Acta Physica Sinica, 1997, 46(9): 1751-1757. doi: 10.7498/aps.46.1751
    [20] JIANG YA-GUANG, SONG CONG-LONG. HOLOGRAPHIC CONCAVE GRATING MONOCHROMATOR. Acta Physica Sinica, 1980, 29(1): 111-116. doi: 10.7498/aps.29.111
Metrics
  • Abstract views:  6210
  • PDF Downloads:  134
  • Cited By: 0
Publishing process
  • Received Date:  05 June 2017
  • Accepted Date:  20 August 2017
  • Published Online:  05 November 2017

/

返回文章
返回