Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetotransport property of negative band gap HgCdTe bulk material

Shen Dan-Ping Zhang Xiao-Dong Sun Yan Kang Ting-Ting Dai Ning Chu Jun-Hao Yu Guo-Lin

Citation:

Magnetotransport property of negative band gap HgCdTe bulk material

Shen Dan-Ping, Zhang Xiao-Dong, Sun Yan, Kang Ting-Ting, Dai Ning, Chu Jun-Hao, Yu Guo-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, spintronic devices have attracted more and more attention because of their good characteristics. The spin-orbit coupling of HgCdTe is one of the most important parts in the study of narrow gap semiconductors. The magneotransport properties of the Hg0.9Cd0.1Te bulk material with an inverted band structure have been hardly reported so far. The spin-orbit coupling strength of HgCdTe is closely related to the band gap. The strength of the spin-orbit coupling increases with the width of the band gap decreasing. Thus, Hg0.9Cd0.1Te should have strong spin-orbit coupling. Meanwhile it should be one of the most suitable materials to fabricate spintronic devices. The main propose of our experiments is to prove this inference. Inside the sample, Rashba spin-orbit interaction (SOI) strongly influences the spin-splitting due to the lack of structural inversion symmetry. In other words, Rashba SOI is the main part of the zero field spin splitting △0. The band structure of Hg1-xCdxTe can be precisely tuned by changing the composition of Cd which keeps an inverted band order when 0 x Γ8 band lying below the Γ6 band (or equivalently a positive band gap) when x0.165. In this paper, the p-type HgCdTe bulk material with Cd component of 0.1 is grown by single crystal. Anodic oxidation is used to induce an inversion layer on the HgCdTe bulk, and indium is used to facilitate Ohmic contacts. The magnetoresistance is measured in the van der Pauw configuration, and the magnetic field is applied perpendicularly to the film. All measurements are carried out in an Oxford Instruments He cryogenic system. At 1.5 K and zero gate voltage, the carrier density n is 1.3×1016 m-2. Clear Shubnikov-de Haas (SdH) oscillation in ρxx and quantum Hall plateaus of Rxy are observed in the Hg0.9Cd0.1Te bulk material with an inverted band structure is investigated in magnetotransport experiment. This indicates that our sample is a good transistor. Fast Fourier transformation is used to deduce the zero-field spin-splitting △0 which is about 26.55 meV. By studying the beating patterns in SdH oscillations we find that the effective g-factor is about-11.54. Both the large zero field spin splitting and the negative effective g-factor suggest that Hg0.9Cd0.1Te has really strong spin-orbit coupling. The investigation of SOI in Hg0.9Cd0.1Te can increase our knowledge of Hg-based narrow-gap semiconductors and benefit the field of spintronics.
      Corresponding author: Yu Guo-Lin, yug@mail.sitp.ac.cn
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2016YFA0202201) and the National Natural Science Foundation of China (Grant No. 11774367)
    [1]

    Hansen G L, Schmit J L, Casselman T N 1982 J. Appl. Phys. 53 7099

    [2]

    Chu J H 2005 Narrow-band Semiconductor Physics (Beijing: Science Press) p120 (in Chinese) [褚君浩 2005 窄禁带半导体物理学 (北京: 科学出版社) 第120页]

    [3]

    Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Wave 35 25 (in Chinese) [胡伟达, 梁健, 越方禹, 陈效双, 陆卫 2016 红外与毫米波学报 35 25]

    [4]

    Gawron W, Martyniuk P, Keblowski A, Kolwas K, Stepień D, Piotrowski J, Madejczyk P, Pedzińska M, Rogalski A 2016 Solid. State. Electron. 118 61

    [5]

    Kopytko M, Rogalski A 2016 Prog. Quant. Electron. 47 1

    [6]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [7]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [8]

    Leubner P L, Lunczer L K, Brne C T, Buhmann H T, Molenkamp L R W 2016 Phys. Rev. Lett. 117 086403

    [9]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2000 Science 294 1488

    [10]

    Sarma S D 2001 Am. Sci. 89 516

    [11]

    Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F, Wang N L 2015 Phys. Rev. Lett. 115 176404

    [12]

    Kretinin A V, Shtrikman H, Goldhaber-Gordon D, Hanl M, Weichselbaum A, von Delft J, Costi T, Mahalu D 2011 Phys. Rev. B 84 245316

    [13]

    Wei L M, Liu X Z, Yu G L, Gao K H, Wang Q W, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H 2013 J. Infrared Millim. Wave 32 141 (in Chinese) [魏来明, 刘新智, 俞国林, 高矿红, 王奇伟, 林铁, 郭少令, 魏彦锋, 杨建荣, 何力, 戴宁, 褚君浩 2013 红外与毫米波学报 32 141]

    [14]

    Gao K H, Wei L M, Yu G L, Yang R, Lin T, Wei Y F, Yang J R, Sun L, Dai N, Chu J H 2012 Acta Phys. Sin. 61 027301 (in Chinese) [高矿红, 魏来明, 俞国林, 杨睿, 林铁, 魏彦锋, 杨建荣, 孙雷, 戴宁, 褚君浩 2012 物理学报 61 027301]

    [15]

    Qiu Z J, Gui Y S, Shu X Z, Dai N, Guo S L, Chu J H 2004 Acta Phys. Sin. 53 1186 (in Chinese) [仇志军, 桂永胜, 疏小舟, 戴宁, 郭少令, 褚君浩 2004 物理学报 53 1186]

    [16]

    Ahearn J S, Davis G D, Byer N E 1982 J. Vac. Sci. Technol. 20 756

    [17]

    van der Pauw L J 1958 Philips. Tech. Rev. 20 220

    [18]

    Buget M, Karavolas V C, Pceters F M, Singleton J, Nicholas R J, Herlach F, Harris J J, van Hove M, Borghs G 1995 Phys. Rev. B 52 12218

    [19]

    Rowe A C H, Nehls J, Stradling R A 2001 Phys. Rev. B 63 201307

    [20]

    Yang W, Chang K 2006 Phys. Rev. B 73 045303

    [21]

    Das B, Datta S, Reifenberger R 1990 Phys. Rev. B 41 8278

    [22]

    Das B, Miller D C, Datta S, Reifenberger R, Hong W P, Bhattacharya P K, Singh J, Jaffe M 1989 Phys. Rev. B 39 1411

    [23]

    Wei L M 2012 Ph. D. Dissertation (Shanghai: Shanghai Institute of Technical Physics, CAS) (in Chinese) [魏来明 2012 博士学位论文 (上海: 中国科学院上海技术物理研究所)]

    [24]

    Coleridge P T, Stoner R, Fletcher R 1989 Phys. Rev. B 39 1120

    [25]

    Zhou Y M 2010 Ph. D. Dissertation (Shanghai: Shanghai Institute of Technical Physics, CAS) (in Chinese) [周远明 2010 博士学位论文 (上海: 中国科学院上海技术物理研究所)]

    [26]

    Yang R, Gao K H, Wei L M, Liu X Z, Hu G J, Yu G L, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H, Austing D G 2011 Appl. Phys. Lett. 99 042103

    [27]

    Laurenti J P, Camassel J, Bouhemadou A, Toulouse B, Legros R, Lusson A 1990 J. Appl. Phys. 67 6454

    [28]

    Teran F J, Potemski M, Maude D K, Andrearczyk T, Jaroszynski J, Karczewski G 2002 Appl. Phys. Lett. 88 186803

    [29]

    Yakunin M V, Podgornykh S M, Mikhailov N N, Dvoretsky S A 2010 Physica E 42 948

    [30]

    Zhang X C, Ortner K, Pfeuffer-Jeschke A, Becker C R, Landwehr G 2004 Phys. Rev. B 69 115340

    [31]

    Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimenional Elec-tron and Hole Systems (Berlin: Springer-Verlag) p133

  • [1]

    Hansen G L, Schmit J L, Casselman T N 1982 J. Appl. Phys. 53 7099

    [2]

    Chu J H 2005 Narrow-band Semiconductor Physics (Beijing: Science Press) p120 (in Chinese) [褚君浩 2005 窄禁带半导体物理学 (北京: 科学出版社) 第120页]

    [3]

    Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Wave 35 25 (in Chinese) [胡伟达, 梁健, 越方禹, 陈效双, 陆卫 2016 红外与毫米波学报 35 25]

    [4]

    Gawron W, Martyniuk P, Keblowski A, Kolwas K, Stepień D, Piotrowski J, Madejczyk P, Pedzińska M, Rogalski A 2016 Solid. State. Electron. 118 61

    [5]

    Kopytko M, Rogalski A 2016 Prog. Quant. Electron. 47 1

    [6]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [7]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [8]

    Leubner P L, Lunczer L K, Brne C T, Buhmann H T, Molenkamp L R W 2016 Phys. Rev. Lett. 117 086403

    [9]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2000 Science 294 1488

    [10]

    Sarma S D 2001 Am. Sci. 89 516

    [11]

    Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F, Wang N L 2015 Phys. Rev. Lett. 115 176404

    [12]

    Kretinin A V, Shtrikman H, Goldhaber-Gordon D, Hanl M, Weichselbaum A, von Delft J, Costi T, Mahalu D 2011 Phys. Rev. B 84 245316

    [13]

    Wei L M, Liu X Z, Yu G L, Gao K H, Wang Q W, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H 2013 J. Infrared Millim. Wave 32 141 (in Chinese) [魏来明, 刘新智, 俞国林, 高矿红, 王奇伟, 林铁, 郭少令, 魏彦锋, 杨建荣, 何力, 戴宁, 褚君浩 2013 红外与毫米波学报 32 141]

    [14]

    Gao K H, Wei L M, Yu G L, Yang R, Lin T, Wei Y F, Yang J R, Sun L, Dai N, Chu J H 2012 Acta Phys. Sin. 61 027301 (in Chinese) [高矿红, 魏来明, 俞国林, 杨睿, 林铁, 魏彦锋, 杨建荣, 孙雷, 戴宁, 褚君浩 2012 物理学报 61 027301]

    [15]

    Qiu Z J, Gui Y S, Shu X Z, Dai N, Guo S L, Chu J H 2004 Acta Phys. Sin. 53 1186 (in Chinese) [仇志军, 桂永胜, 疏小舟, 戴宁, 郭少令, 褚君浩 2004 物理学报 53 1186]

    [16]

    Ahearn J S, Davis G D, Byer N E 1982 J. Vac. Sci. Technol. 20 756

    [17]

    van der Pauw L J 1958 Philips. Tech. Rev. 20 220

    [18]

    Buget M, Karavolas V C, Pceters F M, Singleton J, Nicholas R J, Herlach F, Harris J J, van Hove M, Borghs G 1995 Phys. Rev. B 52 12218

    [19]

    Rowe A C H, Nehls J, Stradling R A 2001 Phys. Rev. B 63 201307

    [20]

    Yang W, Chang K 2006 Phys. Rev. B 73 045303

    [21]

    Das B, Datta S, Reifenberger R 1990 Phys. Rev. B 41 8278

    [22]

    Das B, Miller D C, Datta S, Reifenberger R, Hong W P, Bhattacharya P K, Singh J, Jaffe M 1989 Phys. Rev. B 39 1411

    [23]

    Wei L M 2012 Ph. D. Dissertation (Shanghai: Shanghai Institute of Technical Physics, CAS) (in Chinese) [魏来明 2012 博士学位论文 (上海: 中国科学院上海技术物理研究所)]

    [24]

    Coleridge P T, Stoner R, Fletcher R 1989 Phys. Rev. B 39 1120

    [25]

    Zhou Y M 2010 Ph. D. Dissertation (Shanghai: Shanghai Institute of Technical Physics, CAS) (in Chinese) [周远明 2010 博士学位论文 (上海: 中国科学院上海技术物理研究所)]

    [26]

    Yang R, Gao K H, Wei L M, Liu X Z, Hu G J, Yu G L, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H, Austing D G 2011 Appl. Phys. Lett. 99 042103

    [27]

    Laurenti J P, Camassel J, Bouhemadou A, Toulouse B, Legros R, Lusson A 1990 J. Appl. Phys. 67 6454

    [28]

    Teran F J, Potemski M, Maude D K, Andrearczyk T, Jaroszynski J, Karczewski G 2002 Appl. Phys. Lett. 88 186803

    [29]

    Yakunin M V, Podgornykh S M, Mikhailov N N, Dvoretsky S A 2010 Physica E 42 948

    [30]

    Zhang X C, Ortner K, Pfeuffer-Jeschke A, Becker C R, Landwehr G 2004 Phys. Rev. B 69 115340

    [31]

    Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimenional Elec-tron and Hole Systems (Berlin: Springer-Verlag) p133

  • [1] Guo Xiao-Qing, Wang Qiang, Xue Hai-Bin. Field-like torque-induced tunable zero-field spin-torque nano-oscillator. Acta Physica Sinica, 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [2] Zhang Song-Ran, He Dai-Hua, Tu Hua-Yao, Sun yan, Kang Ting-Ting, Dai Ning, Chu Jun-Hao, Yu Guo-Lin. Magnetotransport properties and stress control of HgCdTe thin film. Acta Physica Sinica, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [3] Guo Yuan-Yuan, Hao Jian-Long, Xue Hai-Bin, Liu Zhe-Jie. Effect of the intrinsic in-plane shape anisotropy on the oscillation characteristics of zero-field spin torque oscillator. Acta Physica Sinica, 2015, 64(19): 198502. doi: 10.7498/aps.64.198502
    [4] Gao Kuang-Hong, Wei Lai-Ming, Yu Guo-Lin, Yang Rui, Lin Tie, Wei Yan-Feng, Yang Jian-Rong, Sun Lei, Dai Ning, Chu Jun-Hao. Magnetotransport property of HgCdTe inversion layer. Acta Physica Sinica, 2012, 61(2): 027301. doi: 10.7498/aps.61.027301
    [5] Lu Cheng, Wang Li, Lu Zhi-Wen, Song Hai-Zhen, Li Gen-Quan. Local lattice structure and spin singlet contribution to zero-field splitting of ZnS:Cr2+. Acta Physica Sinica, 2011, 60(8): 087601. doi: 10.7498/aps.60.087601
    [6] Yin Fei, Hu Wei-Da, Quan Zhi-Jue, Zhang Bo, Hu Xiao-Ning, Li Zhi-Feng, Chen Xiao-Shuang, Lu Wei. Determination of electron diffusion length in HgCdTe photodiodes using laser beam induced current. Acta Physica Sinica, 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
    [7] Cui Hao-Yang, Li Zhi-Feng, Li Ya-Jun, Liu Zhao-Lin, Chen Xiao-Shuang, Lu Wei, Ye Zhen-Hua, Hu Xiao-Ning, Wang Chong. Franz-Keldysh effect in two-photon absorption. Acta Physica Sinica, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [8] Yue Fang-Yu, Shao Jun, Wei Yan-Feng, Lü Xiang, Huang Wei, Yang Jian-Rong, Chu Jun-Hao. Temperature-dependent absorption spectra investigation of shallow levels in HgCdTe grown by liquid phase epitaxy. Acta Physica Sinica, 2007, 56(5): 2878-2881. doi: 10.7498/aps.56.2878
    [9] Gao Hong-Ling, Li Dong-Lin, Zhou Wen-Zheng, Shang Li-Yan, Wang Bao-Qiang, Zhu Zhan-Ping, Zeng Yi-Ping. Subband electron properties of InGaAs/InAlAs high-electron-mobility transistors with different channel chickness. Acta Physica Sinica, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [10] Zhou Zhong-Tang, Guo Li-Wei, Xing Zhi-Gang, Ding Guo-Jian, Tan Chang-Lin, Lü Li, Liu Jian, Liu Xin-Yu, Jia Hai-Qiang, Chen Hong, Zhou Jun-Ming. The transport property of two dimensional electron gas in AlGaN/AlN/GaN structure. Acta Physica Sinica, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [11] Wang Qing-Xue, Yang Jian-Rong, Wei Yan-Feng. Theoretical research on critical thickness of HgCdTe epitaxial layers. Acta Physica Sinica, 2005, 54(12): 5814-5819. doi: 10.7498/aps.54.5814
    [12] Sun Li-Zhong, Chen Xiao-Shuang, Zhou Xiao-Hao, Sun Yan-Lin, Quan Zhi-Jue, Lu Wei. First-principles calculations on the mercury vacancy in Hg050.5 Cd050.5Te. Acta Physica Sinica, 2005, 54(4): 1756-1761. doi: 10.7498/aps.54.1756
    [13] Huang Yang-Cheng, Liu Da-Fu, Liang Jin-Sui, Gong Hai-Mei. Low frequency noise study on short wavelength HgCdTe photodiodes. Acta Physica Sinica, 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
    [14] Sun Tao, Chen Xing-Guo, Hu Xiao-Ning, Li Yan-Jin. Analysis of surface leakage and 1/f noise on long-wavelength infrared HgCdTe photodiodes. Acta Physica Sinica, 2005, 54(7): 3357-3362. doi: 10.7498/aps.54.3357
    [15] Qiu Zhi-Jun, Gui Yong-Sheng, Shu Xiao-Zhou, Dai Ning, Guo Shao-Ling, Chu Jun-Hao. Giant Rashba spin splitting in HgTe/HgCdTe quantum wells. Acta Physica Sinica, 2004, 53(4): 1186-1190. doi: 10.7498/aps.53.1186
    [16] CHEN JIAN-XIN, LI AI-ZHEN, REN YAO-CHENG, K.FRIEDLAND. SHUBNIKOV-DE HAAS OSCILLATIONS IN PSEUDOMORPHIC MODULATION-DOPED InGaAs/InAlAs HETEROSTRUCTURE. Acta Physica Sinica, 1998, 47(5): 796-801. doi: 10.7498/aps.47.796
    [17] DU MAO-LU, LI ZHAO-MIN, KAN JIA-JUN. . Acta Physica Sinica, 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
    [18] REN YAN-RU. ORBITAL SPIN-SPLITTING FACTORS FOR CONDUCTION ELECTRONS IN LEAD: DE HAAS-VAN ALPHEN STUDIES WITH MAGNETIC FEEDBACK. Acta Physica Sinica, 1989, 38(10): 1559-1568. doi: 10.7498/aps.38.1559
    [19] ZHENG GUO-ZHEN, GUO SHAO-LING, TANG DING-YUAN. SHUBNIKOV-DE HAAS OSCILLATION IN n-Hg1-xCdxTe. Acta Physica Sinica, 1987, 36(1): 114-119. doi: 10.7498/aps.36.114
    [20] LOU CHIE-HUNG, HUANG WU-HAN. CONTRIBUTION OF SPIN-SPIN INTERACTION TO THE ZERO-FIELD SPLITTING OF GROUND STATE IN RUBY. Acta Physica Sinica, 1965, 21(12): 1962-1967. doi: 10.7498/aps.21.1962
Metrics
  • Abstract views:  5832
  • PDF Downloads:  152
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2017
  • Accepted Date:  01 September 2017
  • Published Online:  05 December 2017

/

返回文章
返回