Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of field method and its application to integrating motion equation in Riemann-Cartan space

Wang Yong Mei Feng-Xiang Cao Hui-Ying Guo Yong-Xin

Citation:

Improvement of field method and its application to integrating motion equation in Riemann-Cartan space

Wang Yong, Mei Feng-Xiang, Cao Hui-Ying, Guo Yong-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Like the Hamilton-Jacobi method, the Vujanović field method transforms the problem of seeking the particular solution of an ordinary differential equations into the problem of finding the complete solution of a first order quasilinear partial differential equation, which is usually called the basic partial differential equation. Due to no need of the strong restrictive conditions required in the classic Hamilton-Jacobi method, the Vujanović field method may be used in many fields, such as non-conservative systems, nonholonomic systems, Birkhoff systems, controllable mechanical systems, etc. Even so, there is still a fundamental difficulty in the Vujanović field method. That is, for most of dynamical systems, it is hard to find the complete solution of the basic partial differential equation. In this paper, the Vujanović field method is improved into a new field method. The purpose of the improved field method is to find the first integrals of the motion equations, but not the particular solutions of the motion equations. The improved field method points out that for a basic partial differential equation with n independent variables, m (m n) first integrals of a dynamical system can be found as long as a solution with m arbitrary constants of the basic partial differential equation is found. In particular, if the complete solution (the complete solution is a special case of m=n) of the basic partial differential equation is found, all first integrals of the dynamical system can be found. That means that the motion of the dynamical system is completely determined. The Vujanović field method is just equivalent to this particular case. The improved field method expands the applicability of the field method, and is simpler than the Vujanović field method. Two examples are given to illustrate the effectiveness of the method. In addition, the improved field method is used to integrate the motion equations in Riemann-Cartan space. For a first-order linear homogenous scleronomous nonholonomic system subjected to an active force, its motion equation in its Riemann-Cartan configuration space can be obtained by a first order nonlinear nonholonomic mapping. Since the motion equations in Riemann-Cartan configuration space contain quasi-speeds, they are often considered to be difficult to solve directly. In this paper we give a briefing of how to construct the motion equations of a first order linear nonholonomic constraint system in its Riemann-Cartan configuration space, and how to obtain the first integrals of the motion equations in the Riemann-Cartan configuration space by the improved field method. This is an effective method to study some nonholonomic nonconservative motions.
      Corresponding author: Guo Yong-Xin, yxguo@lnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772144, 11572145, 11272050, 11572034, 11202090, 11472124) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2015AO30310178).
    [1]

    Rumyantsev V V, Sumbatov A S 1978 ZAMM 58 477

    [2]

    Vujanović B 1984 Int. J. Non-Linear Mech. 19 383

    [3]

    Vujanović B 1981 Int. J. Engng. Sci. 19 1739

    [4]

    Vujanović B 1987 J. Sound Vib. 114 375

    [5]

    Mei F X 1992 Acta Armam. 13 47 (in Chinese) [梅凤翔 1992 兵工学报 13 47]

    [6]

    Mei F X 1992 Appl. Math. Mech. 13 165 (in Chinese) [梅凤翔 1992 应用数学和力学 13 165]

    [7]

    Mei F X 1989 Acta Mech. Sin. 5 260

    [8]

    Mei F X 2000 Int. J. Non-Linear Mech. 35 229

    [9]

    Mei F X 1990 Acta Mech. Sin. 6 160

    [10]

    Luo S K 1995 Appl. Math. Mech. 16 981 (in Chinese) [罗绍凯 1995 应用数学和力学 16 981]

    [11]

    Zhang Y 1996 J. B. Inst. Technol. 16 36 (in Chinese) [张毅 1996 北京理工大学学报 16 36]

    [12]

    Chen X W, Luo S K 1998 Appl. Math. Mech. 19 447 (in Chinese) [陈向炜, 罗绍凯 1998 应用数学和力学 19 447]

    [13]

    Fu J L, Chen L Q, Luo S K, Chen X W, Wang X M 2001 Acta Phys. Sin. 50 2289 (in Chinese) [傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民 2001 物理学报 50 2289]

    [14]

    Luo S K, Guo Y X, Chen X W, Fu J L 2001 Acta Phys. Sin. 50 2049 (in Chinese) [罗绍凯, 郭永新, 陈向炜, 傅景礼 2001 物理学报 50 2049]

    [15]

    Abd-El-Latif G M 2004 Appl. Math. Comput. 147 267

    [16]

    Kovacic I 2005 Acta Mech. Sin. 21 192

    [17]

    Ge W K 2006 Acta Phys. Sin. 55 10 (in Chinese) [葛伟宽 2006 物理学报 55 10]

    [18]

    Zhang Y 2011 J. Southeast Univ. 27 188

    [19]

    Li Y M, Mei F X 2010 Acta Phys. Sin. 59 5930 (in Chinese) [李彦敏, 梅凤翔 2010 物理学报 59 5930]

    [20]

    Wang Y, Guo Y X 2005 Acta Phys. Sin. 54 5517 (in Chinese) [王勇, 郭永新 2005 物理学报 54 5517]

    [21]

    Guo Y X, Wang Y, Chee G Y, Mei F X 2005 J. Math. Phys. 46 062902

    [22]

    Guo Y X, Liu S X, Liu C, Luo S K, Wang Y 2007 J. Math. Phys. 48 082901

    [23]

    Wang Y, Guo Y X, L Q S, Liu C 2009 Acta Phys. Sin. 58 5142 (in Chinese) [王勇, 郭永新, 吕群松, 刘畅 2009 物理学报 58 5142]

    [24]

    Guo Y X, Liu C, Wang Y, Chang P 2010 Sci. China: Phys. Mech. Astron. 53 1707

  • [1]

    Rumyantsev V V, Sumbatov A S 1978 ZAMM 58 477

    [2]

    Vujanović B 1984 Int. J. Non-Linear Mech. 19 383

    [3]

    Vujanović B 1981 Int. J. Engng. Sci. 19 1739

    [4]

    Vujanović B 1987 J. Sound Vib. 114 375

    [5]

    Mei F X 1992 Acta Armam. 13 47 (in Chinese) [梅凤翔 1992 兵工学报 13 47]

    [6]

    Mei F X 1992 Appl. Math. Mech. 13 165 (in Chinese) [梅凤翔 1992 应用数学和力学 13 165]

    [7]

    Mei F X 1989 Acta Mech. Sin. 5 260

    [8]

    Mei F X 2000 Int. J. Non-Linear Mech. 35 229

    [9]

    Mei F X 1990 Acta Mech. Sin. 6 160

    [10]

    Luo S K 1995 Appl. Math. Mech. 16 981 (in Chinese) [罗绍凯 1995 应用数学和力学 16 981]

    [11]

    Zhang Y 1996 J. B. Inst. Technol. 16 36 (in Chinese) [张毅 1996 北京理工大学学报 16 36]

    [12]

    Chen X W, Luo S K 1998 Appl. Math. Mech. 19 447 (in Chinese) [陈向炜, 罗绍凯 1998 应用数学和力学 19 447]

    [13]

    Fu J L, Chen L Q, Luo S K, Chen X W, Wang X M 2001 Acta Phys. Sin. 50 2289 (in Chinese) [傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民 2001 物理学报 50 2289]

    [14]

    Luo S K, Guo Y X, Chen X W, Fu J L 2001 Acta Phys. Sin. 50 2049 (in Chinese) [罗绍凯, 郭永新, 陈向炜, 傅景礼 2001 物理学报 50 2049]

    [15]

    Abd-El-Latif G M 2004 Appl. Math. Comput. 147 267

    [16]

    Kovacic I 2005 Acta Mech. Sin. 21 192

    [17]

    Ge W K 2006 Acta Phys. Sin. 55 10 (in Chinese) [葛伟宽 2006 物理学报 55 10]

    [18]

    Zhang Y 2011 J. Southeast Univ. 27 188

    [19]

    Li Y M, Mei F X 2010 Acta Phys. Sin. 59 5930 (in Chinese) [李彦敏, 梅凤翔 2010 物理学报 59 5930]

    [20]

    Wang Y, Guo Y X 2005 Acta Phys. Sin. 54 5517 (in Chinese) [王勇, 郭永新 2005 物理学报 54 5517]

    [21]

    Guo Y X, Wang Y, Chee G Y, Mei F X 2005 J. Math. Phys. 46 062902

    [22]

    Guo Y X, Liu S X, Liu C, Luo S K, Wang Y 2007 J. Math. Phys. 48 082901

    [23]

    Wang Y, Guo Y X, L Q S, Liu C 2009 Acta Phys. Sin. 58 5142 (in Chinese) [王勇, 郭永新, 吕群松, 刘畅 2009 物理学报 58 5142]

    [24]

    Guo Y X, Liu C, Wang Y, Chang P 2010 Sci. China: Phys. Mech. Astron. 53 1707

  • [1] Cui Jin-Chao, Liao Cui-Cui, Liu Shi-Xing, Mei Feng-Xiang. A method of judging a Birkhoffian to be a first integral of constrained mechanical system. Acta Physica Sinica, 2017, 66(4): 040201. doi: 10.7498/aps.66.040201
    [2] Song Duan, Liu Chang, Guo Yong-Xin. The integral variational principles for embedded variation identity of high-order nonholonomic constrained systems. Acta Physica Sinica, 2013, 62(9): 094501. doi: 10.7498/aps.62.094501
    [3] Ding Guang-Tao. A study on the first integrals of harmonic oscillators. Acta Physica Sinica, 2013, 62(6): 064502. doi: 10.7498/aps.62.064502
    [4] Ding Guang-Tao. On the first integrals of linear damped oscillators. Acta Physica Sinica, 2013, 62(6): 064501. doi: 10.7498/aps.62.064501
    [5] Ding Guang-Tao. The families of Lagrangians of a Painleve equation. Acta Physica Sinica, 2012, 61(11): 110202. doi: 10.7498/aps.61.110202
    [6] Li Yan-Min, Mei Feng-Xiang. Integral methods for the generalized Birkhoff equations. Acta Physica Sinica, 2010, 59(9): 5930-5933. doi: 10.7498/aps.59.5930
    [7] Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming. Unified symmetry of mechanico-electrical systems with nonholonomic constraints of non-Chetaev’s type. Acta Physica Sinica, 2009, 58(10): 6732-6736. doi: 10.7498/aps.58.6732
    [8] Wang Yong, Guo Yong-Xin, Lü Qun-Song, Liu Chang. Nonholonomic mapping theory and geometric formulation for rotation of a rigid body with one fixed point. Acta Physica Sinica, 2009, 58(8): 5142-5149. doi: 10.7498/aps.58.5142
    [9] Zhang Yi. Parametric equations and its first integrals for Birkhoffian systems in the event space. Acta Physica Sinica, 2008, 57(5): 2649-2653. doi: 10.7498/aps.57.2649
    [10] Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints in the event space. Acta Physica Sinica, 2007, 56(11): 6188-6193. doi: 10.7498/aps.56.6188
    [11] Jia Li-Qun, Zhang Yao-Yu, Zheng Shi-Wang. Hojman conserved quantities for systems with non-Chetaev nonholonomic constraints in the event space. Acta Physica Sinica, 2007, 56(2): 649-654. doi: 10.7498/aps.56.649
    [12] Zhang Yi. Non-Noether conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints. Acta Physica Sinica, 2006, 55(2): 504-510. doi: 10.7498/aps.55.504
    [13] Ge Wei-Kuan. A field method for solving Whittaker equations. Acta Physica Sinica, 2006, 55(1): 10-12. doi: 10.7498/aps.55.10
    [14] Wang Yong, Guo Yong-Xin. d'Alembert-Lagrange principle on Riemann-Cartan space. Acta Physica Sinica, 2005, 54(12): 5517-5520. doi: 10.7498/aps.54.5517
    [15] Zhang Yi, Mei Feng-Xiang. Effects of non-conservative forces and nonholonomic constraints on Noether symmetries of a Lagrange system. Acta Physica Sinica, 2004, 53(3): 661-668. doi: 10.7498/aps.53.661
    [16] Li Ai-Min, Zhang Ying, Li Zi-Ping. Poincaré-Cartan integral invariant of a nonholonomic constrained generalized mechanical system. Acta Physica Sinica, 2004, 53(9): 2816-2820. doi: 10.7498/aps.53.2816
    [17] Zhang Yi. Effects of non-conservative forces and nonholonomic constraints on Lie symmetrie s of a Hamiltonian system. Acta Physica Sinica, 2003, 52(6): 1326-1331. doi: 10.7498/aps.52.1326
    [18] Zhang Yi, Ge Wei-Kuan. Integrating factors and conservation laws for non-holonomic dynamical systems. Acta Physica Sinica, 2003, 52(10): 2363-2367. doi: 10.7498/aps.52.2363
    [19] Luo Shao-Kai, Lu Yi-Bing, Zhou Qiang, Wang Ying-De, Oyang Shi. . Acta Physica Sinica, 2002, 51(9): 1913-1917. doi: 10.7498/aps.51.1913
    [20] ZHANG YI. CONNEXION OF FIRST INTEGRALS WITH PARTICULAR SOLUTIONS OF THE VARIATIONAL EQUATIONS FOR SYSTEMS OF GENERALIZED CLASSICAL MECHANICS. Acta Physica Sinica, 2001, 50(11): 2059-2061. doi: 10.7498/aps.50.2059
Metrics
  • Abstract views:  5875
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  09 July 2017
  • Accepted Date:  27 September 2017
  • Published Online:  05 February 2018

/

返回文章
返回