Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Formation and control of bubbles during the mitigation of laser-induced damage on fused silica surface

Zhang Li-Juan Zhang Chuan-Chao Chen Jing Bai Yang Jiang Yi-Lan Jiang Xiao-Long Wang Hai-Jun Luan Xiao-Yu Yuan Xiao-Dong Liao Wei

Citation:

Formation and control of bubbles during the mitigation of laser-induced damage on fused silica surface

Zhang Li-Juan, Zhang Chuan-Chao, Chen Jing, Bai Yang, Jiang Yi-Lan, Jiang Xiao-Long, Wang Hai-Jun, Luan Xiao-Yu, Yuan Xiao-Dong, Liao Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Surface damage on fused silica optics initiated by high fluence 351 nm laser is one of the major bottlenecks for the high power laser systems, such as, Shenguang Ⅲ (SG-Ⅲ) laser facility. Generally, the CO2 laser, which is strongly absorbed by fused silica and thus can effectively heat fused silica above melting temperature, is used to locally mitigate the damages, called the non-evaporative mitigation method. However, subsurface bubbles may be introduced in the damage mitigation process by CO2 laser melting. Unfortunately, the mitigated damage sites with subsurface bubbles can be easily re-initiated upon subsequent laser shots. In this article, in order to eliminate the subsurface bubbles, we systematically investigate the influences of mitigation protocols in different ways of laser irradiation preheating on the formation and control of subsurface bubbles. Based on the simulated results of the temperature distribution and structural changes under CO2 laser irradiation, two CO2 laser-based non-evaporative mitigation methods are proposed, which are adopted for the mitigation of surface damage sites ranging in size from 150 m to 250 m, and systematically investigated to assess the effect of eliminating subsurface bubbles. The process of mitigation method I is that multiple laser irradiations with short time and increasing power are initially used to preheat the damage site and then a higher power laser irradiation is adopted to mitigate the damage site. The process of mitigation method Ⅱ is that a long time, low power laser irradiation is first used to preheat the damage site and then a high power laser irradiation is adopted to mitigate the damage site. The detailed morphologies of the mitigation sites and subsurface bubbles produced by the two mitigation methods are measured by optical microscope with high magnification. A large number of small subsurface bubbles are observed in mitigation method I. While, less subsurface bubbles are observed in mitigation method Ⅱ. The statistical results indicate that among the thirty-four mitigated sites, only eight have no surface bubbles in method I. In contrast, among the fifty-four mitigated sites, forty-nine have no surface bubbles in mitigation method Ⅱ. The experimental results suggest that the formation probability of subsurface bubbles is effectively suppressed by the mitigation method Ⅱ. The mechanism of eliminating subsurface bubbles in the mitigation method Ⅱ is discussed based on the structural changes of the fused silica in the mitigation process. It is found that the fused silica is not melted by the long time, low power laser irradiation, which means that a long time preheating without melting could provide enough time to effectively reject air and impurities enwrapping in cracks, and thus reducing the formation probability of subsurface bubbles in the form of the crack closing due to rapid melting. With the mitigation method Ⅱ, the probability of mitigated sites without subsurface bubbles can reach 98%.
      Corresponding author: Liao Wei, liaowei@caep.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11404301, 61505185).
    [1]

    Salleo A, Genin F Y, Yoshiyama J, Stolz C J, Kozlowski M R 1998 Proc. SPIE 3224 341

    [2]

    Raze G, Morchain J M, Loiseau M, Lamaignere L, Josse M A, Bercegol H 2003 Proc. SPIE 4932 127

    [3]

    Suratwala T I, Miller P E, Bude J D, Steele W A, Shen N, Monticelli M V, Feit M D, Laurence T A, Norton M A, Carr C W, Wong L L 2011 J. Am. Ceram. Soc. 94 416

    [4]

    Norton M A, Hrubesh L W, Wu Z, Donohue E E, Feit M D, Kozlowski M R, Milam D, Neeb K P, Molander W A, Rubenchik A M, Sell W D, Wegner P 2001 Proc. SPIE 4347 468

    [5]

    Brusasco R M, Penetrante B M, Butler J A, Hrubesh L W 2002 Proc. SPIE 4679 40

    [6]

    Mendez E, Nowak K M, Baker H J, Villarreal F J, Hall D R 2006 Appl Opt. 45 5358

    [7]

    Liu C M, Yang L, Yan Z H, Jiang Y, Wang H J, Liao W, Xiang X, He S B, L H B, Yuan X D, Zheng W G, Zu X T 2013 Acta Phys. Sin. 62 094701(in Chinese) [刘春明, 杨亮, 晏中华, 蒋勇, 王海军, 廖威, 向霞, 贺少勃, 吕海兵, 袁晓东, 郑万国, 祖小涛 2013 物理学报 62 094701]

    [8]

    Bouchut P, Delrive L, Decruppe D, Garrec P 2004 Proc. SPIE 5252 122

    [9]

    Adams J J, Bolourchi M, Bude J D, Guss G M, Matthews M J, Nostrand M C 2010 Proc. SPIE 7842 784223

    [10]

    Liu H J, Huang J, Wang F R, Zhou X D, Jiang X D, Wu W D 2010 Acta Phys. Sin. 59 1308(in Chinese) [刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东 2010 物理学报 59 1308]

    [11]

    Zhang C C, Liao W, Zhang L J, Ye Y Y, Chen J, Wang H J, Luan X Y, Yuan X D 2014 Adv. Cond. Matter Phys. 2014 638045

    [12]

    Jiang Y, Zhou Q, Qiu R, Gao X, Wang H L, Yao C Z, Wang J B, Zhao X, Liu C M, Xiang X, Zu X T, Yuan X D, Miao X X 2016 Chin. Phys.. 25 108104

    [13]

    Guss G, Bass I, Draggoo V, Hackel R, Payne S, Lancaster M, Mak P 2006 Proc. SPIE 6403 64030M

    [14]

    Jiang Y, Qiu R, Yang Y J, Liao W, Wang H J, Yuan X D, Liu C M, Xiang X, Zu X T 2014 J. Optoelectronics Laser 25 1326(in Chinese) [蒋勇, 邱荣, 杨永佳, 廖威, 王海军, 袁晓东, 刘春明, 向霞, 祖小涛 2014 光电子激光 25 1326]

    [15]

    Yang S T, Matthews M J, Elhadj S, Cooke D, Guss G M, Draggoo V G, Wegner P J 2010 Appl. Opt. 49 2606

    [16]

    Feit M D, Rubenchik A M 2002 Proc. SPIE 4932 91

    [17]

    Mendez E, Nowak K M, Baker H J, Villarreal F J, Hall D R 2006 Appl. Opt. 45 5358

    [18]

    Jiang Y, He S B, Yuan X D, Wang H J, Liao W, L H B, Liu C M, Xiang X, Qiu R, Yang Y J, Zheng W G, Zu X T 2014 Acta Phys. Sin. 63 068105(in Chinese) [蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛 2014 物理学报 63 068105]

    [19]

    Zhao J, Sullivan J, Zayac J, Bennett T D 2004 J. Appl. Phys. 95 5475

    [20]

    Doremus R H 2002 J. Appl. Phys. 92 7619

  • [1]

    Salleo A, Genin F Y, Yoshiyama J, Stolz C J, Kozlowski M R 1998 Proc. SPIE 3224 341

    [2]

    Raze G, Morchain J M, Loiseau M, Lamaignere L, Josse M A, Bercegol H 2003 Proc. SPIE 4932 127

    [3]

    Suratwala T I, Miller P E, Bude J D, Steele W A, Shen N, Monticelli M V, Feit M D, Laurence T A, Norton M A, Carr C W, Wong L L 2011 J. Am. Ceram. Soc. 94 416

    [4]

    Norton M A, Hrubesh L W, Wu Z, Donohue E E, Feit M D, Kozlowski M R, Milam D, Neeb K P, Molander W A, Rubenchik A M, Sell W D, Wegner P 2001 Proc. SPIE 4347 468

    [5]

    Brusasco R M, Penetrante B M, Butler J A, Hrubesh L W 2002 Proc. SPIE 4679 40

    [6]

    Mendez E, Nowak K M, Baker H J, Villarreal F J, Hall D R 2006 Appl Opt. 45 5358

    [7]

    Liu C M, Yang L, Yan Z H, Jiang Y, Wang H J, Liao W, Xiang X, He S B, L H B, Yuan X D, Zheng W G, Zu X T 2013 Acta Phys. Sin. 62 094701(in Chinese) [刘春明, 杨亮, 晏中华, 蒋勇, 王海军, 廖威, 向霞, 贺少勃, 吕海兵, 袁晓东, 郑万国, 祖小涛 2013 物理学报 62 094701]

    [8]

    Bouchut P, Delrive L, Decruppe D, Garrec P 2004 Proc. SPIE 5252 122

    [9]

    Adams J J, Bolourchi M, Bude J D, Guss G M, Matthews M J, Nostrand M C 2010 Proc. SPIE 7842 784223

    [10]

    Liu H J, Huang J, Wang F R, Zhou X D, Jiang X D, Wu W D 2010 Acta Phys. Sin. 59 1308(in Chinese) [刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东 2010 物理学报 59 1308]

    [11]

    Zhang C C, Liao W, Zhang L J, Ye Y Y, Chen J, Wang H J, Luan X Y, Yuan X D 2014 Adv. Cond. Matter Phys. 2014 638045

    [12]

    Jiang Y, Zhou Q, Qiu R, Gao X, Wang H L, Yao C Z, Wang J B, Zhao X, Liu C M, Xiang X, Zu X T, Yuan X D, Miao X X 2016 Chin. Phys.. 25 108104

    [13]

    Guss G, Bass I, Draggoo V, Hackel R, Payne S, Lancaster M, Mak P 2006 Proc. SPIE 6403 64030M

    [14]

    Jiang Y, Qiu R, Yang Y J, Liao W, Wang H J, Yuan X D, Liu C M, Xiang X, Zu X T 2014 J. Optoelectronics Laser 25 1326(in Chinese) [蒋勇, 邱荣, 杨永佳, 廖威, 王海军, 袁晓东, 刘春明, 向霞, 祖小涛 2014 光电子激光 25 1326]

    [15]

    Yang S T, Matthews M J, Elhadj S, Cooke D, Guss G M, Draggoo V G, Wegner P J 2010 Appl. Opt. 49 2606

    [16]

    Feit M D, Rubenchik A M 2002 Proc. SPIE 4932 91

    [17]

    Mendez E, Nowak K M, Baker H J, Villarreal F J, Hall D R 2006 Appl. Opt. 45 5358

    [18]

    Jiang Y, He S B, Yuan X D, Wang H J, Liao W, L H B, Liu C M, Xiang X, Qiu R, Yang Y J, Zheng W G, Zu X T 2014 Acta Phys. Sin. 63 068105(in Chinese) [蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛 2014 物理学报 63 068105]

    [19]

    Zhao J, Sullivan J, Zayac J, Bennett T D 2004 J. Appl. Phys. 95 5475

    [20]

    Doremus R H 2002 J. Appl. Phys. 92 7619

  • [1] Zhang Xue-Yang, Chen Jun, Hu Wang-Yu. Atomic simulation of surface damage of fused silica under laser irradiation. Acta Physica Sinica, 2023, 72(15): 156201. doi: 10.7498/aps.72.20230606
    [2] Liu Chong, Ji Lai-Lin, Zhu Bao-Qiang, Lin Zun-Qi. Numerical simulation analysis of high efficient SFG and color separation in far field in high power laser facility based on noncollinear phase matching by KDP crystal. Acta Physica Sinica, 2016, 65(14): 144202. doi: 10.7498/aps.65.144202
    [3] Bai Yang, Zhang Li-Juan, Liao Wei, Zhou Hai, Zhang Chuan-Chao, Chen Jing, Ye Ya-Yun, Jiang Yi-Lan, Wang Hai-Jun, Luan Xiao-Yu, Yuan Xiao-Dong, Zheng Wan-Guo. Study of downstream light intensity modulation induced by mitigated damage pits of fused silica using numerical simulation and experimental measurements. Acta Physica Sinica, 2016, 65(2): 024205. doi: 10.7498/aps.65.024205
    [4] Jiang Yong, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Liu Chun-Ming, Xiang Xia, Qiu Rong, Zhou Qiang, Gao Xiang, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao, Miao Xin-Xiang. Effect of thermal annealing on damage growth of mitigated site on fused silica. Acta Physica Sinica, 2016, 65(4): 044209. doi: 10.7498/aps.65.044209
    [5] Shen Chao, Cheng Xiang-Ai, Tian Ye, Xu Zhong-Jie, Jiang Tian. Experimental and computational study of damage pocess induced by 1064 nm nanosecond laser pulse on the exit surface of fused silica. Acta Physica Sinica, 2016, 65(15): 155201. doi: 10.7498/aps.65.155201
    [6] Han Wei, Feng Bin, Zheng Kui-Xing, Zhu Qi-Hua, Zheng Wan-Guo, Gong Ma-Li. Laser-induced damage growth of fused silica at 351 nm on a large-aperture high-power laser facility. Acta Physica Sinica, 2016, 65(24): 246102. doi: 10.7498/aps.65.246102
    [7] Zhong Mian, Yang Liang, Ren Wei, Xiang Xia, Liu Xiang, Lian You-Yun, Xu Shi-Zhen, Guo De-Cheng, Zheng Wan-Guo, Yuan Xiao-Dong. Optical properties and laser damage performance of SiO2 irradiated by high-power pulsed electron beam. Acta Physica Sinica, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [8] Jiang Yong, He Shao-Bo, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Lü Hai-Bing, Liu Chun-Ming, Xiang Xia, Qiu Rong, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao. Experimental investigation and numerical simulation of defect elimination by CO2 laser raster scanning on fused silica. Acta Physica Sinica, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [9] Liang Shan-Yong, Wang Jiang-An, Zong Si-Guang, Wu Rong-Hua, Ma Zhi-Guo, Wang Xiao-Yu, Wang Le-Dong. Laser detection method of ship wake bubbles based on multiple scattering intensity and polarization characteristics. Acta Physica Sinica, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [10] Liu Chun-Ming, Yang Liang, Yan Zhong-Hua, Jiang Yong, Wang Hai-Jun, Liao Wei, Xiang Xia, He Shao-Bo, Lü Hai-Bin, Yuan Xiao-Dong, Zheng Wan-Guo, Zu Xiao-Tao. The influence of CO2 laser local irradiation on the laser damage resistance of fused silica. Acta Physica Sinica, 2013, 62(9): 094701. doi: 10.7498/aps.62.094701
    [11] Liu Hong-Jie, Wang Feng-Rui, Luo Qing, Zhang Zhen, Huang Jin, Zhou Xin-Da, Jiang Xiao-Dong, Wu Wei-Dong, Zheng Wan-Guo. Experimental comparison of damage performance induced by nanosecond 1 laser between K9 and fused silica optics. Acta Physica Sinica, 2012, 61(7): 076103. doi: 10.7498/aps.61.076103
    [12] Zhang Chun-Lai, Liu Chun-Ming, Xiang Xia, Dai Wei, Wang Zhi-Guo, Li Li, Yuan Xiao-Dong, He Shao-Bo, Zu Xiao-Tao. Near-field modulated simulation of repaired site contained crack or bubble in fused silica subsurface. Acta Physica Sinica, 2012, 61(12): 124214. doi: 10.7498/aps.61.124214
    [13] Wang Kun-Peng, Yan Shi. S substituting for P point defect-induced laser damage in KDP crystals. Acta Physica Sinica, 2011, 60(9): 097401. doi: 10.7498/aps.60.097401
    [14] Liu Hong-Jie, Zhou Xin-Da, Huang Jin, Wang Feng-Rui, Jiang Xiao-Dong, Huang Jing, Wu Wei-Dong, Zheng Wan-Guo. Comparison of damage between front and rear surfaces under nanosecond 355nm laser irradiation on fused silica. Acta Physica Sinica, 2011, 60(6): 065202. doi: 10.7498/aps.60.065202
    [15] Zhao Xing-Hai, Hu Jian-Ping, Gao Yang, Pan Feng, Ma Ping. Laser induced damage and fracture of optical fiber in vacuum chamber. Acta Physica Sinica, 2010, 59(6): 3917-3923. doi: 10.7498/aps.59.3917
    [16] Xia Zhi-Lin, Guo Pei-Tao, Xue Yi-Yu, Huang Cai-Hua, Li Zhan-Wang. Investigation of the plasma bursting process in short pulsed laser induced film damage. Acta Physica Sinica, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [17] Wang Feng-Rui, Huang Jin, Liu Hong-Jie, Zhou Xin-Da, Jiang Xiao-Dong, Wu Wei-Dong, Zheng Wan-Guo. Laser induced rear-surface-crack damage properties of fused silica etched with HF solution. Acta Physica Sinica, 2010, 59(7): 5122-5127. doi: 10.7498/aps.59.5122
    [18] Liu Hong-Jie, Huang Jin, Wang Feng-Rui, Zhou Xin-Da, Jiang Xiao-Dong, Wu Wei-Dong. Effect of thermal stresses on fused silica surface on the laser induced damage. Acta Physica Sinica, 2010, 59(2): 1308-1313. doi: 10.7498/aps.59.1308
    [19] Zhang Hua-Wei, Li Yan-Xiang. Study on bubble nucleation in liquid metal. Acta Physica Sinica, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
    [20] Liang Li-Ping, Zhang Lei, Xu Yao, Zhang Bin, Wu Dong, Sun Yu-Han, Jiang Xiao-Dong, Wei Xiao-Feng, Li Zhi-Hong, Wu Zhong-Hua. Sol-gel deposition of highly reflective multilayer coatings from PVP-ZrO2 hybrid systems. Acta Physica Sinica, 2006, 55(11): 6175-6184. doi: 10.7498/aps.55.6175
Metrics
  • Abstract views:  6447
  • PDF Downloads:  206
  • Cited By: 0
Publishing process
  • Received Date:  14 August 2017
  • Accepted Date:  30 September 2017
  • Published Online:  05 January 2018

/

返回文章
返回