Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Motion-compensated coherent integration of constant moving target echoes with arbitrary complex envelope

Feng Xi-An Zhang Yang-Mei

Citation:

Motion-compensated coherent integration of constant moving target echoes with arbitrary complex envelope

Feng Xi-An, Zhang Yang-Mei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Signal integration, as an effective method of detecting weak target, is widely used in areas of radar, sonar, etc. In previous studies of long-time coherent integration, researchers usually established a multi-pulse echo model with linear frequency modulation (LFM) signal due to its good compression performance and large Doppler tolerance. Then, perfect analytical formula can be deduced to compensate for range migration and Doppler spread, which is helpful in analyzing the mechanism of long-time coherent integration in depth. However, besides LFM, a wide variety of signal waveforms are also used in modern sonar and underwater guidance system to meet the requirements for diverse applications. For instance, continuous wave (CW) pulse is often used in signal detection, high resolution direction of arrival (DOA) estimation, and velocity estimation, while large time-bandwidth product waveforms such as modulated signal, coded signal, and pseudo-random signal are utilized for special tasks like anti-interference detection, channel matching, and active concealed detection. Therefore, the formulas and corresponding instructive conclusions deduced by LFM have no generality when other sonar waveforms are used in pulse integration. In this paper, we focus on long-time coherent integration for arbitrary signal reflected by underwater target moving with a uniform velocity and propose a motion-compensated coherent integration method for arbitrary complex envelop signal. A kind of general ambiguity function (GAF) for transmitted signal is defined to present a unified expression based on GAF for the output of the matched filter. The operation not only helps us to describe and calculate the pulse compression form of the arbitrary complex envelop by using a general mathematical model, but also provides information about the range migration and Doppler frequency shift of the multi-pulse echo, which is needed in pulse range alignment and FFT integration. For the matched filter output expressed by the GAF, Keystone transform is utilized to correct the complex envelop of the multi-pulse echo and eliminate the range walk. Then, Doppler frequency shift is compensated for by performing FFT transform, and the long-time coherent integration for arbitrary complex envelop is realized. To verify the correctness of the proposed method, we carry out the computer simulation on both signal integration and detection performance by using four sonar waveforms, i.e., CW signal, LFM signal, m-sequence phase-coded signal, and Costas frequency hop coded signal. The simulation results show that the proposed motion-compensated coherent integration method is applicable to arbitrary complex envelop signal. We also design an anechoic water tank experiment scheme which can successfully obtain the multi-pulse echoes of constant moving target. The motion-compensated coherent integration of the experimental data of the above-mentioned four waveforms further validates the effectiveness of the proposed method.
      Corresponding author: Zhang Yang-Mei, zhangyangmei1@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61671378).
    [1]

    North D O 1963 Proc. IEEE 51 1016

    [2]

    Liu Z L, Liao G S, Yang Z W 2012 Acta Electron. Sin. 40 799(in Chinese) [刘志凌, 廖桂生, 杨志伟 2012 电子学报 40 799]

    [3]

    Zhang L, Sheng J L, Duan J, Xing M D, Qiao Z J, Bao Z 2013 EURASIP J. Adv. Signal Process. 2013 33

    [4]

    Dong Q, Zhang L, Xu G, Xing M D 2014 J. Xian Jiaotong Univ. 48 107(in Chinese) [董祺, 张磊, 徐刚, 邢孟道 2014 西安交通大学学报 48 107]

    [5]

    Carlson B D, Evans E D, Wilson S L 1994 IEEE Trans. Aerosp. Electron. Syst. 30 102

    [6]

    Carlson B D, Evans E D, Wilson S L 1994 IEEE Trans. Aerosp. Electron. Syst. 30 109

    [7]

    Pang C S, Hou H L, Han Y 2012 J. Electron. Infor. Technol. 34 754(in Chinese) [庞存锁, 侯慧玲, 韩焱 2012 电子与信息学报 34 754]

    [8]

    Yu J, Xu J, Peng Y N, Xia X G 2012 IEEE Trans. Aerosp. Electron. Syst. 47 1186

    [9]

    Yu J, Xu J, Peng Y N, Xia X G 2012 IEEE Trans. Aerosp. Electron. Syst. 47 2473

    [10]

    Yu J, Xu J, Peng Y N, Xia X G 2012 IEEE Trans. Aerosp. Electron. Syst. 48 991

    [11]

    Xu J, Xia X G, Peng S B, Yu J, Peng Y N, Qian L C 2012 IEEE Trans. Sig. Proc. 60 6190

    [12]

    Perry R P, Dipietro R C, Kozma A, Vaccaro J J 1994 Algorithms for Synthetic Aperture Radar Imagery (Bellingham: SPIE) p160

    [13]

    Perry R P, Dipietro R C, Fante R L 1999 IEEE Trans. Aerosp. Electron. Syst. 35 188

    [14]

    Ruan H, Wu Y H, Jia X, Ye W 2013 IEEE Geo. Rem. Sens. Lett. 11 128

    [15]

    Zhao Y B, Zhou X P, Wang J 2013 J. Xidian Univ. Nat. Sci. 40 98(in Chinese) [赵永波, 周晓佩, 王娟 2013 西安电子科技大学学报自然科学版 40 98]

    [16]

    Guo B F, Shang C X, Wang J L, Gao M G, Fu X J 2014 Acta Phys. Sin. 63 238406(in Chinese) [郭宝锋, 尚朝轩, 王俊岭, 高梅国, 傅雄军 2014 物理学报 63 238406]

    [17]

    Feng X A, Zhang Y M, Su J J 2014 J. Northwest. Polytechnical Univ. 32 882(in Chinese) [冯西安, 张杨梅, 苏建军 2014 西北工业大学学报 32 882]

    [18]

    He H, Li J, Petre S 2012 Waveform Design for Active Sensing Systems: A Computational Approach (Cambridge: Cambridge Univ. Press) pp18-25

    [19]

    Zhang Y M 2017 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [张杨梅 2017 博士学位论文 (西安: 西北工业大学)]

    [20]

    Guo H W, Liang D N, Wang Y, Huang X T, Dong Z 2003 Proceedings of the 2003 International Society for Optics and Photon. AeroSense Orlando, United States, April 21-25, 2003 p1

  • [1]

    North D O 1963 Proc. IEEE 51 1016

    [2]

    Liu Z L, Liao G S, Yang Z W 2012 Acta Electron. Sin. 40 799(in Chinese) [刘志凌, 廖桂生, 杨志伟 2012 电子学报 40 799]

    [3]

    Zhang L, Sheng J L, Duan J, Xing M D, Qiao Z J, Bao Z 2013 EURASIP J. Adv. Signal Process. 2013 33

    [4]

    Dong Q, Zhang L, Xu G, Xing M D 2014 J. Xian Jiaotong Univ. 48 107(in Chinese) [董祺, 张磊, 徐刚, 邢孟道 2014 西安交通大学学报 48 107]

    [5]

    Carlson B D, Evans E D, Wilson S L 1994 IEEE Trans. Aerosp. Electron. Syst. 30 102

    [6]

    Carlson B D, Evans E D, Wilson S L 1994 IEEE Trans. Aerosp. Electron. Syst. 30 109

    [7]

    Pang C S, Hou H L, Han Y 2012 J. Electron. Infor. Technol. 34 754(in Chinese) [庞存锁, 侯慧玲, 韩焱 2012 电子与信息学报 34 754]

    [8]

    Yu J, Xu J, Peng Y N, Xia X G 2012 IEEE Trans. Aerosp. Electron. Syst. 47 1186

    [9]

    Yu J, Xu J, Peng Y N, Xia X G 2012 IEEE Trans. Aerosp. Electron. Syst. 47 2473

    [10]

    Yu J, Xu J, Peng Y N, Xia X G 2012 IEEE Trans. Aerosp. Electron. Syst. 48 991

    [11]

    Xu J, Xia X G, Peng S B, Yu J, Peng Y N, Qian L C 2012 IEEE Trans. Sig. Proc. 60 6190

    [12]

    Perry R P, Dipietro R C, Kozma A, Vaccaro J J 1994 Algorithms for Synthetic Aperture Radar Imagery (Bellingham: SPIE) p160

    [13]

    Perry R P, Dipietro R C, Fante R L 1999 IEEE Trans. Aerosp. Electron. Syst. 35 188

    [14]

    Ruan H, Wu Y H, Jia X, Ye W 2013 IEEE Geo. Rem. Sens. Lett. 11 128

    [15]

    Zhao Y B, Zhou X P, Wang J 2013 J. Xidian Univ. Nat. Sci. 40 98(in Chinese) [赵永波, 周晓佩, 王娟 2013 西安电子科技大学学报自然科学版 40 98]

    [16]

    Guo B F, Shang C X, Wang J L, Gao M G, Fu X J 2014 Acta Phys. Sin. 63 238406(in Chinese) [郭宝锋, 尚朝轩, 王俊岭, 高梅国, 傅雄军 2014 物理学报 63 238406]

    [17]

    Feng X A, Zhang Y M, Su J J 2014 J. Northwest. Polytechnical Univ. 32 882(in Chinese) [冯西安, 张杨梅, 苏建军 2014 西北工业大学学报 32 882]

    [18]

    He H, Li J, Petre S 2012 Waveform Design for Active Sensing Systems: A Computational Approach (Cambridge: Cambridge Univ. Press) pp18-25

    [19]

    Zhang Y M 2017 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [张杨梅 2017 博士学位论文 (西安: 西北工业大学)]

    [20]

    Guo H W, Liang D N, Wang Y, Huang X T, Dong Z 2003 Proceedings of the 2003 International Society for Optics and Photon. AeroSense Orlando, United States, April 21-25, 2003 p1

  • [1] Jiang Chuan-Dong, Wang Qi, Du Guan-Feng, Yi Xiao-Feng, Tian Bao-Feng. Characteristics of surface nuclear magnetic off-resonance signal and complex envelope inversion. Acta Physica Sinica, 2018, 67(1): 013302. doi: 10.7498/aps.67.20171464
    [2] Guo Li-Ren, Hu Yi-Hua, Dong Xiao, Li Min-Le. Translation compensation and micro-motion parameter estimation of laser micro-Doppler effect. Acta Physica Sinica, 2018, 67(15): 150701. doi: 10.7498/aps.67.20172754
    [3] Liu Zhen, Huang Jie, Wang Jian-Tao, Zhao Yong-Jun, Chen Shi-Wen. Generalized unambiguous tracking method based on pseudo correlation function for multi-level coded symbol modulated signals. Acta Physica Sinica, 2017, 66(13): 139101. doi: 10.7498/aps.66.139101
    [4] Zeng Zhe-Zhao, Lei Ni, Sheng Li-Zeng. Compensation control on chaotic systems with uncertainties based on polynomial basisfunctions model. Acta Physica Sinica, 2013, 62(15): 150506. doi: 10.7498/aps.62.150506
    [5] Zeng Zhe-Zhao. Feedback compensation control on chaotic system with uncertainty based on radial basis function neural network. Acta Physica Sinica, 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [6] An Ying, Du Zhen-Hui, Liu Jing-Wang, Xu Ke-Xin. A method to compensate the tuned nonlinearity of DFB diode laser in the laser self-heterodyne coherent measuring system. Acta Physica Sinica, 2012, 61(3): 034207. doi: 10.7498/aps.61.034207
    [7] Jin Ai-Jun, Wang Ze-Feng, Hou Jing, Guo Liang, Jiang Zong-Fu, Xiao Rui. Coherence properties of supercontinuum quantified by complex degree of self-coherence. Acta Physica Sinica, 2012, 61(15): 154201. doi: 10.7498/aps.61.154201
    [8] Xing Hong-Yan, Cheng Yan-Yan, Xu Wei. Detection of weak target signal with least-squares support vector machine and generalized embedding windows under chaotic background. Acta Physica Sinica, 2012, 61(10): 100506. doi: 10.7498/aps.61.100506
    [9] Lan Hai-Jiang, Pang Hua-Feng, Wei Lian-Fu. Wigner functions of multiple-photon excited coherent states. Acta Physica Sinica, 2009, 58(12): 8281-8288. doi: 10.7498/aps.58.8281
    [10] Ye Hong-Xia, Jin Ya-Qiu. A novel approach of dual GPOF /DCIM for fast computation of the sommerfeld integrals and electromagnetic scattering from an object partially embedded in dielectric half-space. Acta Physica Sinica, 2009, 58(7): 4579-4589. doi: 10.7498/aps.58.4579
    [11] Meng Xiang-Guo, Wang Ji-Suo, Liang Bao-Long. Wigner function for the photon-added even and odd coherent state. Acta Physica Sinica, 2007, 56(4): 2160-2167. doi: 10.7498/aps.56.2160
    [12] Dan You-Quan, Zhang Bin. Coherent-mode representation of the elegant Hermite-Gaussian beams. Acta Physica Sinica, 2006, 55(2): 712-716. doi: 10.7498/aps.55.712
    [13] Peng Run-Wu, Fan Dian-Yuan. Comparison of Lorentz pulsed beams obtained by using complex amplitude envelope representation and complex analytic signal representation. Acta Physica Sinica, 2005, 54(6): 2680-2685. doi: 10.7498/aps.54.2680
    [14] NI ZHI-XIANG. SUPERPOSITION OF GENERALIZED COHERENT STATES IN THE NON HARMONIC OSCILLATOR POTENTIAL. Acta Physica Sinica, 1997, 46(9): 1687-1692. doi: 10.7498/aps.46.1687
    [15] LIN KUN-ZHI. THE DESCRIPTION OF DOUBLE WAVE FUNCTION OF PARTICLE MOTION IN THE REFLECTIONLESS POTENTIAL WELL. Acta Physica Sinica, 1996, 45(3): 360-369. doi: 10.7498/aps.45.360
    [16] XU ZI-WEN. EVEN AND ODD GENERALIZED COHERENT STATES IN THE NON HARMONIC OSCILLATOR POTENTIAL. Acta Physica Sinica, 1996, 45(11): 1807-1811. doi: 10.7498/aps.45.1807
    [17] Sun Ming-Chao, Zhao Ren, Zhao Zheng. . Acta Physica Sinica, 1995, 44(7): 1018-1022. doi: 10.7498/aps.44.1018
    [18] OPTICAL INFOHMATION PROCESSING GROUP. NONCOHERENT OPTICAL PROCESSING OF IMAGES BLURRED BY LARGE RELATIVE MOTIONS. Acta Physica Sinica, 1976, 25(2): 124-128. doi: 10.7498/aps.25.124
    [19] GUO HAN-YING, WU YONG-SHI, LI GEN-DAO. THE SPINOR FORMALISM AND THE COMPLEX-VECTOR FORMALISM OF GENERAL RELATIVITY. Acta Physica Sinica, 1974, 23(5): 5-16. doi: 10.7498/aps.23.5
    [20] AHAли3 дBижEHия злEKTPOHOB B цилиHдPичECKOй ЗлEKTPOCTATичECKOй CиCTEME C люБblM CEчEHиEM. Acta Physica Sinica, 1965, 21(12): 2015-2023. doi: 10.7498/aps.21.2015
Metrics
  • Abstract views:  6671
  • PDF Downloads:  150
  • Cited By: 0
Publishing process
  • Received Date:  11 October 2017
  • Accepted Date:  07 March 2018
  • Published Online:  05 June 2018

/

返回文章
返回