Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of optical properties of germanium doped with phosphorus and bismuth

Huang Lei Liu Wen-Liang Deng Chao-Sheng

Citation:

First-principles study of optical properties of germanium doped with phosphorus and bismuth

Huang Lei, Liu Wen-Liang, Deng Chao-Sheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using first-principles calculations based on density functional theory, we investigate the electronic structures and optical properties of germanium doped by phosphorus and bismuth with different concentrations. By analyzing the electronic structures and optical properties of the doped systems, we can theoretically analyze and predict the optical and electrical practical applications of N-doped germanium semiconductors. By analyzing and comparing the densities of electronic states before and after doped, we can draw some conclusions. The conclusions show that the Fermi level moves in the direction of conduction band after being doped. Although germanium is an indirect band gap luminescent material, the doped systems all become direct band gap luminescence. Doping more or less affects various optical properties in different energy ranges. In a low energy range, the dielectric function and refractive index of the doped systems are affected. When the doping concentration is 2.083%, the dielectric function and refractive index of the doped system both have a special change. And the absorption of the doped system is changed in the high energy. As the energy increases after the absorption peak, the absorption of the doped system drops faster. The reflectance of the doped system is affected in all the energy ranges. The reflectance of the doped system increases in medium energy. And the reflectance of the doped system is reduced in low energy and high energy range. However, when the doping concentration is 2.083% and the energy is less than 1.7 eV, the reflectance of the doped system is higher than that of the undoped system. The conductivity of the doped system forms two peaks, adding a peak in low energy. The additional peaks in the systems where the doping concentrations are 1.563% and 2.083% are obvious. The peak of the loss function increases after being doped. However, as the doping concentration increases, the increment of the loss function decreases. As the doping concentration increases, the peak is formed at a higher energy. The conclusions are of significance for guiding the optical applications of N-type doped germanium. According to the conclusions, we can adjust the doping concentration and energy range in the optical applications of N-doped germanium.
      Corresponding author: Liu Wen-Liang, wlliu@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504311) and Hunan Natural Science Foundation, China (Grant Nos. 2017JJ3313, 2017JJ3308).
    [1]

    Sharafi Z, Mohyeddine S, Mohammed S O, Kershi R M, Ravindra R P 2014 Phys. Res. Int. 10 1155

    [2]

    Li Y P, Li C X, Zhuo X, Liu Z T 2016 J. Alloys Compd. 10 1016

    [3]

    Jordan W B, Wagner S 2002 MRS Proc. 10 1557

    [4]

    Pan F C, Lin X L, Chen H M 2015 Acta Phys. Sin. 64 224218 (in Chinese) [潘凤春, 林雪玲, 陈焕铭 2015 物理学报 64 224218]

    [5]

    Ray S, Samaresh D, Singha R, Manna S, Achintya D 2011 Nanoscale Res. Lett. 02 224

    [6]

    Alireza S Z, Othaman S K, Ghoshal M, Mustafa K 2015 Chin. Phys. B 25 028103

    [7]

    Donat J A, Michael D, Gerlach J, Dirk R 2016 MRS Adv. 10 1557

    [8]

    Burbaev T M, Zavaritskaya T N, Kurbatov V A, Mel'nik N N, Tsvetkov V A, Zhuravlev K S, Markov V A, Nikiforov A I 2001 Semicond. Sci. Technol. 10 1134

    [9]

    Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J 2008 Acta Phys. Sin. 57 6520 (in Chinese) [段满益, 徐明, 周海平, 陈青云, 胡志刚, 董成军 2008 物理学报 57 6520]

    [10]

    Palummo M, Onida G, Del Sole R, Stella A, Tognini P, Cheyssac P, Kofman R 2001 Phys. Stat. Sol. 10 1002

    [11]

    Chen X H 2013 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese) [陈小红 2013 博士学位论文(厦门: 厦门大学)]

    [12]

    Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y 2009 Opt. Express 17 10019

    [13]

    Hou Q Y, Dong H Y, Ying C, Ma W 2012 Acta Phys. Sin. 61 167102 (in Chinese) [侯清玉, 董红英, 迎春, 马文 2012 物理学报 61 167102]

    [14]

    Shen X J 2013 Ph. D. Dissertation (Suzhou: Suzhou University) (in Chinese) [申小娟 2013 博士学位论文(苏州: 苏州大学)]

    [15]

    Sun X C, Liu J F, Kimerling L C, Michel J 2009 Appl. Phys. Lett. 95 1103

    [16]

    Li M, Li J C 2006 Mater. Lett. 10 1025

    [17]

    Shea H R, Martel R, Avouris P 2000 Phys. Rev. Lett. 03 1152

    [18]

    Hu C Q, Tian Y, Wang J B, Sam Z, Cheng D Y, Chen Y, Zhang K, Zheng W T 2016 Vacumm 10 1016

    [19]

    Shen Y, Mueller G, Watanabe S, Gardner N, Munkholm A, Krames M 2007 Appl. Phys. Lett. 91 141101

    [20]

    Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 036202 (in Chinese) [黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩 2012 物理学报 61 036202]

  • [1]

    Sharafi Z, Mohyeddine S, Mohammed S O, Kershi R M, Ravindra R P 2014 Phys. Res. Int. 10 1155

    [2]

    Li Y P, Li C X, Zhuo X, Liu Z T 2016 J. Alloys Compd. 10 1016

    [3]

    Jordan W B, Wagner S 2002 MRS Proc. 10 1557

    [4]

    Pan F C, Lin X L, Chen H M 2015 Acta Phys. Sin. 64 224218 (in Chinese) [潘凤春, 林雪玲, 陈焕铭 2015 物理学报 64 224218]

    [5]

    Ray S, Samaresh D, Singha R, Manna S, Achintya D 2011 Nanoscale Res. Lett. 02 224

    [6]

    Alireza S Z, Othaman S K, Ghoshal M, Mustafa K 2015 Chin. Phys. B 25 028103

    [7]

    Donat J A, Michael D, Gerlach J, Dirk R 2016 MRS Adv. 10 1557

    [8]

    Burbaev T M, Zavaritskaya T N, Kurbatov V A, Mel'nik N N, Tsvetkov V A, Zhuravlev K S, Markov V A, Nikiforov A I 2001 Semicond. Sci. Technol. 10 1134

    [9]

    Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J 2008 Acta Phys. Sin. 57 6520 (in Chinese) [段满益, 徐明, 周海平, 陈青云, 胡志刚, 董成军 2008 物理学报 57 6520]

    [10]

    Palummo M, Onida G, Del Sole R, Stella A, Tognini P, Cheyssac P, Kofman R 2001 Phys. Stat. Sol. 10 1002

    [11]

    Chen X H 2013 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese) [陈小红 2013 博士学位论文(厦门: 厦门大学)]

    [12]

    Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y 2009 Opt. Express 17 10019

    [13]

    Hou Q Y, Dong H Y, Ying C, Ma W 2012 Acta Phys. Sin. 61 167102 (in Chinese) [侯清玉, 董红英, 迎春, 马文 2012 物理学报 61 167102]

    [14]

    Shen X J 2013 Ph. D. Dissertation (Suzhou: Suzhou University) (in Chinese) [申小娟 2013 博士学位论文(苏州: 苏州大学)]

    [15]

    Sun X C, Liu J F, Kimerling L C, Michel J 2009 Appl. Phys. Lett. 95 1103

    [16]

    Li M, Li J C 2006 Mater. Lett. 10 1025

    [17]

    Shea H R, Martel R, Avouris P 2000 Phys. Rev. Lett. 03 1152

    [18]

    Hu C Q, Tian Y, Wang J B, Sam Z, Cheng D Y, Chen Y, Zhang K, Zheng W T 2016 Vacumm 10 1016

    [19]

    Shen Y, Mueller G, Watanabe S, Gardner N, Munkholm A, Krames M 2007 Appl. Phys. Lett. 91 141101

    [20]

    Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 036202 (in Chinese) [黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩 2012 物理学报 61 036202]

  • [1] Ding Hua-Jun, Xue Zhong-Ying, Wei Xing, Zhang Bo. Effects of ultra-thin aluminium interlayer on Schottky barrier parameters of NiGe/n-type Ge Schottky barrier diode. Acta Physica Sinica, 2022, 71(20): 207302. doi: 10.7498/aps.71.20220320
    [2] Sun Yu-Xin, Wu De-Fan, Zhao Tong, Lan Wu, Yang De-Ren, Ma Xiang-Yang. Mechanical strength of Czochralski silicon crystal: Effects of co-doping germanium and nitrogen. Acta Physica Sinica, 2021, 70(9): 098101. doi: 10.7498/aps.70.20201803
    [3] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun, Zhao Ming-Jie. Improved performance of Al/n+Ge Ohmic contact andGe n+/p diode by two-step annealing method. Acta Physica Sinica, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [4] Pan Feng-Chun, Lin Xue-Ling, Cao Zhi-Jie, Li Xiao-Fu. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb. Acta Physica Sinica, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [5] Yu Zhi-Qiang, Zhang Chang-Hua, Lang Jian-Xun. The electronic structure and optical properties of P-doped silicon nanotubes. Acta Physica Sinica, 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [6] Li Qian-Qian, Hao Qiu-Yan, Li Ying, Liu Guo-Dong. Theory study of rare earth (Ce, Pr) doped GaN in electronic structrue and optical property. Acta Physica Sinica, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [7] Li Chun-Xia, Dang Sui-Hu. Doped with Ag and Zn effects on electronic structure and optical properties of CdS. Acta Physica Sinica, 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [8] Feng Xian-Yang, Lu Yao, Jiang Lei, Zhang Guo-Lian, Zhang Chang-Wen, Wang Pei-Ji. Study of the optical properties of superlattices ZnO doped with indium. Acta Physica Sinica, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [9] Yu Feng, Wang Pei-Ji, Zhang Chang-Wen. Electronic structure and optical properties of Al-doped SnO2. Acta Physica Sinica, 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [10] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [11] Le Ling-Cong, Ma Xin-Guo, Tang Hao, Wang Yang, Li Xiang, Jiang Jian-Jun. Electronic structure and optical properties of transition metal doped titanate nanotubes. Acta Physica Sinica, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [12] Yang Ze-Jin, Li De-Hua, Liu Qiang, Cheng Xin-Lu. Effect of Al and N codoping on the optical properties of Zn1-xMgxO. Acta Physica Sinica, 2010, 59(12): 8829-8835. doi: 10.7498/aps.59.8829
    [13] Hu Zhi-Gang, Duan Man-Yi, Xu Ming, Zhou Xun, Chen Qing-Yun, Dong Cheng-Jun, Linghu Rong-Feng. Electronic structure and optical properties of ZnO doped with Fe and Ni. Acta Physica Sinica, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [14] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [15] Guo Jian-Yun, Zheng Guang, He Kai-Hua, Chen Jing-Zhong. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [16] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [17] Xing Hai-Ying, Fan Guang-Han, Zhao De-Gang, He Miao, Zhang Yong, Zhou Tian-Ming. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [18] Ding Ying-Chun, Xiang An-Ping, Xu Ming, Zhu Wen-Jun. Electrical structures and optical properties of doped earth element (Y,La) in γ-Si3N4. Acta Physica Sinica, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [19] Shen Yi-Bin, Zhou Xun, Xu Ming, Ding Ying-Chun, Duan Man-Yi, Linghu Rong-Feng, Zhu Wen-Jun. Electronic structure and optical properties of ZnO doped with transition metals. Acta Physica Sinica, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [20] Pan Hong-Zhe, Xu Ming, Zhu Wen-Jun, Zhou Hai-Ping. First-principles study on the electrical structures and optical properties of β-Si3N4. Acta Physica Sinica, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
Metrics
  • Abstract views:  7986
  • PDF Downloads:  208
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2017
  • Accepted Date:  19 April 2018
  • Published Online:  05 July 2018

/

返回文章
返回