Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fast implementation of four-dimensional entangled state in separately coupled cavities via shortcut to adiabatic passage

Zhang Chun-Ling Liu Wen-Wu

Citation:

Fast implementation of four-dimensional entangled state in separately coupled cavities via shortcut to adiabatic passage

Zhang Chun-Ling, Liu Wen-Wu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum information, as a comprehensive subject of quantum mechanics and information science, has a broad theoretical research value and application prospect. As a resource of quantum information, quantum entanglement has been studied thoroughly, which is not only significant to understand the features of quantum mechanics, but also of great value to the development of the method new quantum information processing. Therefore, the generation of entangled state is widely studied theoretically. In comparison to low-dimensional entangled states, multi-dimensional entangled states are not only safe but also efficient and error-tolerant for quantum computation. The adiabatic technique is one of the most widely used and proven techniques in quantum information science. The main advantages of this technique are that it is insensitive to the fluctuation of experimental parameters, and the interaction time of the system is not required to be controled accurately. However, limited by the adiabatic condition, it usually takes relatively long interaction time in scheme via adiabatic technique to achieve the target states. If the required evolution time is too long, the scheme may be useless. To overcome this problem, researchers have done a lot in the field of finding ways to shorten the long interaction time of adiabatic passage. Among these works, the technique named shortcuts to adiabatic passage is a successful work in this field and it has attracted a great deal of attention in recent years. In this paper, based on transitionless quantum driving to construct shortcuts to adiabatic passage, an efficient scheme to fast generate a four-dimensional entangled state of two-atom is proposed. The atoms are respectively trapped in the separate two-mode cavities which are connected by optical fiber. To achieve an alternative physically feasible system, the non-resonant dynamics is adopted to create a Hamiltonian which can exactly drive the system to evolve along the instantaneous eigenstates of the original Hamiltonian. As a result, if the system goes through adiabatic passage, it will evolve in the dark state, not transit to other states. Hence, using transitionless quantum driving to shortcuts to adiabatic passage, the evolutionary time in this scheme is much less than that in other schemes based on traditional adiabatic passage. The rigorous numerical simulations are conducted. The results show that with suitable pulsed laser parameters, this scheme is robust against decoherence arising from fiber decay, cavity decay and atomic spontaneous emission. Moreover, the scheme is more feasible in physics. That is, based on the proposed scheme, a high-fidelity four-dimensional entangled state of two-atom can be achieved.
      Corresponding author: Zhang Chun-Ling, mzhangchunling@163.com
    • Funds: Project supported by the Funding from the Fujian Education Department, China (Grant No. JB14220).
    [1]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [2]

    Vitanov N V, Suominen K A, Shore B W 1999 J. Phys. B 32 4535

    [3]

    Zhang C L, Chen M F 2015 Opt. Commun. 339 61

    [4]

    Zhang C L, Chen M F 2015 Chin. Phys. B 24 070310

    [5]

    Zhao Y J, Liu B, Ji Y Q, Tang S Q, Shao X Q 2017 Sci. Rep. 7 16489

    [6]

    Premaratne S P, Wellstood F C, Palmer B S 2017 Nat. Commun. 8 14148

    [7]

    Chen X, Ruschhaupt A, Schmidt S, Campo A D, Odelin D G, Muga J G 2010 Phys. Rev. Lett. 104 063002

    [8]

    Chen X, Lizuain I, Ruschhaupt A, Odelin D G, Muga J G 2010 Phys. Rev. Lett. 105 123003

    [9]

    Wu J L, Ji X, Zhang S 2017 Sci. Rep. 7 46255

    [10]

    Kang Y H, Huang B H, Song J, Lu P M, Xia Y 2017 Laser Phys. Lett. 14 025201

    [11]

    Kang Y H, Chen Y H, Wu Q C, Huang B H, Xia Y, Song J 2016 Sci. Rep. 6 30151

    [12]

    Baksic A, Hugo R H, Clerk A A 2016 Phys. Rev. Lett. 116 230503

    [13]

    Huang B H, Kang Y H, Chen Y H, Wu Q C, Song J, Xia Y 2017 Phys. Rev. A 96 022314

    [14]

    Berry M V 2009 J. Phys. A: Math. Theor. 42 365303

    [15]

    Chen Y H, Xia Y, Song J, Chen Q Q 2015 Sci. Rep. 5 15616

    [16]

    Huang X B, Zhong Z R, Chen Y H 2016 Quantum Inf. Process. 14 4475

    [17]

    Shan W J, Xia Y, Chen Y H, Song J 2016 Quantum Inf. Process. 15 2359

    [18]

    Kaszlikowski D, Gnaciski P, Ukowski M, Miklaszewski W, Zeilinger A 2000 Phys. Rev. Lett. 85 4418

    [19]

    Walborn S P, Lemelle D S, Almeida M P, Ribeiro P H S 2006 Phys. Rev. Lett. 96 090501

    [20]

    Vaziri A, Weihs G, Zeilinger A 2002 Phys. Rev. Lett. 89 240401

    [21]

    Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127902

    [22]

    Lloyd S 2008 Science 321 1463

    [23]

    Ali-Khan I, Broadbent C J, Howell J C 2007 Phys. Rev. Lett. 98 060503

    [24]

    Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O’Connell1 A D, Sank D, Wang H H, Wenner J, Cleland A N, Geller A R, Martinis J M 2009 Science 325 722

    [25]

    Lanyon B P, Barbieri M, Almeida M P, Jennewein T, Ralph T C, Resch K J, Pryde G J, O’Brien J L, Gilchrist A, White A G 2009 Nat. Phys. 5 134

    [26]

    Di Y M, Wei H R 2013 Phys. Rev. A 87 012325

    [27]

    Di Y M, Wei H R 2015 Phys. Rev. A 92 062317

    [28]

    Wu J L, Ji X, Zhang S 2016 Sci. Rep. 6 33669

    [29]

    Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y B, Alfonso Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622

    [30]

    Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401

    [31]

    Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817

    [32]

    Buck J R, Kimble H J 2003 Phys. Rev. A 67 033806

    [33]

    Mei G H 1996 Ph. D. Dissertation (Wuhan: Chinese Academy of Sciences) (in Chinese) [梅刚华 1996 博士学位论文(武汉: 中国科学院武汉物理与数学研究所)]

    [34]

    Yang Y F, Chen Y H, Wu Q C, Kang Y H, Huang B H, Xia Y 2017 Quantum Inf. Process. 16 15

    [35]

    Mundt A B, Kreuter A, Becher C, Leibfried D, Eschner J, Schmidt-Kaler F, Blatt R 2002 Phys. Rev. Lett. 89 103001

    [36]

    Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91 043902

  • [1]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [2]

    Vitanov N V, Suominen K A, Shore B W 1999 J. Phys. B 32 4535

    [3]

    Zhang C L, Chen M F 2015 Opt. Commun. 339 61

    [4]

    Zhang C L, Chen M F 2015 Chin. Phys. B 24 070310

    [5]

    Zhao Y J, Liu B, Ji Y Q, Tang S Q, Shao X Q 2017 Sci. Rep. 7 16489

    [6]

    Premaratne S P, Wellstood F C, Palmer B S 2017 Nat. Commun. 8 14148

    [7]

    Chen X, Ruschhaupt A, Schmidt S, Campo A D, Odelin D G, Muga J G 2010 Phys. Rev. Lett. 104 063002

    [8]

    Chen X, Lizuain I, Ruschhaupt A, Odelin D G, Muga J G 2010 Phys. Rev. Lett. 105 123003

    [9]

    Wu J L, Ji X, Zhang S 2017 Sci. Rep. 7 46255

    [10]

    Kang Y H, Huang B H, Song J, Lu P M, Xia Y 2017 Laser Phys. Lett. 14 025201

    [11]

    Kang Y H, Chen Y H, Wu Q C, Huang B H, Xia Y, Song J 2016 Sci. Rep. 6 30151

    [12]

    Baksic A, Hugo R H, Clerk A A 2016 Phys. Rev. Lett. 116 230503

    [13]

    Huang B H, Kang Y H, Chen Y H, Wu Q C, Song J, Xia Y 2017 Phys. Rev. A 96 022314

    [14]

    Berry M V 2009 J. Phys. A: Math. Theor. 42 365303

    [15]

    Chen Y H, Xia Y, Song J, Chen Q Q 2015 Sci. Rep. 5 15616

    [16]

    Huang X B, Zhong Z R, Chen Y H 2016 Quantum Inf. Process. 14 4475

    [17]

    Shan W J, Xia Y, Chen Y H, Song J 2016 Quantum Inf. Process. 15 2359

    [18]

    Kaszlikowski D, Gnaciski P, Ukowski M, Miklaszewski W, Zeilinger A 2000 Phys. Rev. Lett. 85 4418

    [19]

    Walborn S P, Lemelle D S, Almeida M P, Ribeiro P H S 2006 Phys. Rev. Lett. 96 090501

    [20]

    Vaziri A, Weihs G, Zeilinger A 2002 Phys. Rev. Lett. 89 240401

    [21]

    Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127902

    [22]

    Lloyd S 2008 Science 321 1463

    [23]

    Ali-Khan I, Broadbent C J, Howell J C 2007 Phys. Rev. Lett. 98 060503

    [24]

    Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O’Connell1 A D, Sank D, Wang H H, Wenner J, Cleland A N, Geller A R, Martinis J M 2009 Science 325 722

    [25]

    Lanyon B P, Barbieri M, Almeida M P, Jennewein T, Ralph T C, Resch K J, Pryde G J, O’Brien J L, Gilchrist A, White A G 2009 Nat. Phys. 5 134

    [26]

    Di Y M, Wei H R 2013 Phys. Rev. A 87 012325

    [27]

    Di Y M, Wei H R 2015 Phys. Rev. A 92 062317

    [28]

    Wu J L, Ji X, Zhang S 2016 Sci. Rep. 6 33669

    [29]

    Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y B, Alfonso Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622

    [30]

    Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401

    [31]

    Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817

    [32]

    Buck J R, Kimble H J 2003 Phys. Rev. A 67 033806

    [33]

    Mei G H 1996 Ph. D. Dissertation (Wuhan: Chinese Academy of Sciences) (in Chinese) [梅刚华 1996 博士学位论文(武汉: 中国科学院武汉物理与数学研究所)]

    [34]

    Yang Y F, Chen Y H, Wu Q C, Kang Y H, Huang B H, Xia Y 2017 Quantum Inf. Process. 16 15

    [35]

    Mundt A B, Kreuter A, Becher C, Leibfried D, Eschner J, Schmidt-Kaler F, Blatt R 2002 Phys. Rev. Lett. 89 103001

    [36]

    Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91 043902

  • [1] Wang Xue-Mei, Zhang An-Qi, Zhao Sheng-Mei. Implementation of controlled phase gate based on superadiabatic shortcut in circuit quantum electrodynamics. Acta Physica Sinica, 2022, 71(15): 150301. doi: 10.7498/aps.71.20220248
    [2] Tao Zhi-Wei, Ren Yi-Chong, Abdukirim Azezigul, Liu Shi-Wei, Rao Rui-Zhong. Quantum illumination radar with entangled coherent states. Acta Physica Sinica, 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [3] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [4] Ji Yan-Qiang, Wang Jie, Liu Ying-Li, Zhang Da-Wei, Xiao Rui-Jie, Dong Li, Xiu Xiao-Ming. Fast generation of three-atom singlet state with Rydberg superatom. Acta Physica Sinica, 2021, 70(12): 120301. doi: 10.7498/aps.70.20201841
    [5] Guan Yong, Liu Dan-Dan, Wang Xin-Liang, Zhang Hui, Shi Jun-Ru, Bai Yang, Ruan Jun, Zhang Shou-Gang. Investigation of cold atom collision frequency shift measured by rapid adiabatic passage in cesium fountain clock. Acta Physica Sinica, 2020, 69(14): 140601. doi: 10.7498/aps.69.20191800
    [6] Yang Rong-Guo, Zhang Chao-Xia, Li Ni, Zhang Jing, Gao Jiang-Rui. Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process. Acta Physica Sinica, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] Yu Wan-Rang, Ji Xin. Superadiabatic scheme for fast generating Greenberger-Horne-Zeilinger state of three superconducting qubits. Acta Physica Sinica, 2019, 68(3): 030302. doi: 10.7498/aps.68.20181922
    [8] Li Xiao-Ke, Feng Wei. Quantum trajectory simulation for nonadiabatic molecular dynamics. Acta Physica Sinica, 2017, 66(15): 153101. doi: 10.7498/aps.66.153101
    [9] Wan Wen-Jian, Yin Rong, Tan Zhi-Yong, Wang Feng, Han Ying-Jun, Cao Jun-Cheng. Study of 2.9 THz quantum cascade laser based on bound-to-continuum transition. Acta Physica Sinica, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [10] Yu Fei, Wang Chun-Hua, Yin Jin-Wen, Xu Hao. A 4-D chaos with fully qualified four-wing type. Acta Physica Sinica, 2012, 61(2): 020506. doi: 10.7498/aps.61.020506
    [11] Tang You-Liang, Liu Xiang, Zhang Xiao-Wei, Tang Xiao-Fang. Teleportation of the M-particle entangled state by using one entangled state. Acta Physica Sinica, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [12] Universal telecloning of quantum entangled states. Acta Physica Sinica, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [13] Liu Yang-Zheng, Jiang Chang-Sheng, Lin Chang-Sheng, Sun Han. Four-dimensional switchable hyperchaotic system. Acta Physica Sinica, 2007, 56(9): 5131-5135. doi: 10.7498/aps.56.5131
    [14] Liu Chuan-Long, Zheng Yi-Zhuang. Teleportation of entangled coherent state through bipartite entangled quantum channels. Acta Physica Sinica, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [15] Bai Li-Hua, Zhang Qing-Gang, Liu Xin-Guo. Four-dimensional quantum scattering calculations on the D+CD4→CD3+D2 reaction. Acta Physica Sinica, 2003, 52(11): 2774-2780. doi: 10.7498/aps.52.2774
    [16] SHI MING-JUN, DU JIANG-FENG, ZHU DONG-PEI. ENTANGEMENT OF QUANTUM PURE STATES. Acta Physica Sinica, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [17] LAI YUN-ZHONG, LI WEI-DONG, LIANG JIU-QING. ADIABATIC TRANSITION TRANSFER PHENOMENON OF ELECTRONS AND THE QUANTUM STATISTICAL PROPERTIES OF LIGHT FIELD IN A KERR MEDIUM. Acta Physica Sinica, 1998, 47(9): 1489-1497. doi: 10.7498/aps.47.1489
    [18] YUAN JIN-SHENG, SUN CHANG-PU. . Acta Physica Sinica, 1995, 44(1): 29-34. doi: 10.7498/aps.44.29
    [19] LIN REN-MING, ZHANG LIN. THE MULTI-PHOTON QUANTUM STATISTICAL THEORY OF DRIVEN OPTICAL SYSTEMS (Ⅲ)——IMPROVEMENT OF THE METHOD OF ADIABATIC ELIMINATION. Acta Physica Sinica, 1989, 38(4): 548-558. doi: 10.7498/aps.38.548
    [20] ZHAO ZHENG. HAWKING RADIATION IN FOUR DIMENSIONAL STATIC RIEMANN SPACETIME. Acta Physica Sinica, 1981, 30(11): 1508-1519. doi: 10.7498/aps.30.1508
Metrics
  • Abstract views:  5414
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  08 February 2018
  • Accepted Date:  14 May 2018
  • Published Online:  20 August 2019

/

返回文章
返回