Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coupling effects of surface elasticity and disjoining pressure on film drainage process

Ye Xue-Min Li Ming-Lan Zhang Xiang-Shan Li Chun-Xi

Citation:

Coupling effects of surface elasticity and disjoining pressure on film drainage process

Ye Xue-Min, Li Ming-Lan, Zhang Xiang-Shan, Li Chun-Xi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The aim of the present paper is to investigate the gravity-driven draining process containing insoluble surfactants, with the coupling effects of surface elasticity and disjoining pressure taken into consideration. A set of evolution equations including liquid film thickness, surface velocity and surfactant concentration, is established based on the lubrication theory. Assuming that the top of the liquid film is attached to the wireframe and the bottom is connected to the reservoir, the drainage stability is simulated with the FreeFem software. The characteristics of film evolution under the coupled effects of surface elasticity and disjoining pressure are examined, respectively. The simulated results show that the surface elasticity and the disjoining pressure have significant influences on the vertical thin film draining process. Under the effect of the surface elasticity alone, the initial film thickness increases with the elasticity increasing and the black film only forms on the top of the liquid film, but cannot stably exist and breaks quickly. The addition of the surface elasticity can increase the liquid film thickness and the drainage time, reduce the surface velocity, and rigidify the interface. When the disjoining pressure is applied merely, the surfactant flows into the reservoir continuously; hardly can the liquid film form a surface tension gradient and thus cannot form a countercurrent phenomenon. Under the coupling effect of the surface elasticity and disjoining pressure, a more stable liquid film forms. In the early stage of drainage, surface elasticity increases the film thickness, reduces the surface speed and generates the liquid countercurrent to slow the drainage process. When the black film appears, the electrostatic repulsion of the disjoining pressure is notable and makes the black film stable. The results obtained in the paper are in agreement with some of the experimental results in the literature. However, the elasticity-related surface tension and surfactant concentration model used is a simplified model. The nonlinear relationship between surface tension and surfactant concentration should be further considered in future theoretical models.
      Corresponding author: Li Chun-Xi, leechunxi@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202079) and the Fundamental Research for the Central Universities of China (Grant No. 13MS97).
    [1]

    Wang J, Nguyen A V, Farrokhpay S 2015 Adv. Colloid Interface 228 55

    [2]

    Bournival G, Du Z, Ata S, Jameson G J 2014 Chem. Eng. Sci. 116 536

    [3]

    Firouzi M, Nguyen A V 2014 Adv. Powder Technol. 25 1212

    [4]

    Wang L, Yoon R H 2008 Int. J. Miner. Process. 85 101

    [5]

    Wang J, Nguyen A V, Farrokhpay S 2016 Colloid Surface A 488 70

    [6]

    Sett S, Sinharay S, Yarin A L 2013 Langmuir 29 4934

    [7]

    Wang L, Yoon R H 2006 Colloid Surface A 282 84

    [8]

    Mysels K J, Cox M C, Skewis J D 1961 J. Phys. Chem. 65 1107

    [9]

    Champougny L, Scheid B, Restagno F, Vermant J, Rio E 2015 Soft Matter 11 2758

    [10]

    Saulnier L, Champougny L, Bastien G, Restagno F, Langevin D, Rio E 2014 Soft Matter 10 2899

    [11]

    Liggieri L, Attolini V, Ferrari M, Ravera F 2002 J. Colloid Interface Sci. 255 225

    [12]

    Persson C M, Claesson P M, Lunkenheimer K 2002 J. Colloid Interface Sci. 251 182

    [13]

    Karakashev S I, Ivanova D S, Angarska Z K, Manev E D, Tsekov R, Radoev B, Slavchov R, Nguyen A V 2010 Colloid Surface A 365 122

    [14]

    Seiwert J, Dollet B, Cantat I 2014 J. Fluid Mech. 739 124

    [15]

    Exerowa D, Zacharieva M, Cohen R, Platikanov D 1979 Colloid Polym. Sci. 257 1089

    [16]

    Churaev N V 2003 Colloid J. 103 197

    [17]

    Manev E D, Pugh R J 1991 Langmuir 7 2253

    [18]

    Bhakta A, Ruckenstein E 1997 J. Colloid Interface Sci. 191 184

    [19]

    Carey E, Stubenrauch C 2010 J. Colloid Interface Sci. 343 314

    [20]

    Buchavzov N, Stubenrauch C 2007 Langmuir 23 5315

    [21]

    Stubenrauch C, Schlarmann J, Strey R 2002 Phys. Chem. Chem. Phys. 4 4504

    [22]

    Karakashev S I, Ivanova D S 2010 J. Colloid Interface Sci. 343 584

    [23]

    Teletzke G F, Davis H T, Scriven L E 1988 Rev. Phys. Appl. 23 989

    [24]

    Mitlin V S, Petviashvili N V 1994 Phys. Lett. A 192 323

    [25]

    Frastia L, Archer A J, Thiele U 2012 Soft Matter 8 11363

    [26]

    Ye X M, Yang S D, Li C X 2017 Acta Phys. Sin. 66 184702 (in Chinese) [叶学民, 杨少东, 李春曦 2017 物理学报 66 184702]

    [27]

    Ye X M, Yang S D, Li C X 2017 Acta Phys. Sin. 66 194701 (in Chinese) [叶学民, 杨少东, 李春曦 2017 物理学报 66 194701]

    [28]

    Tabakova S S, Danov K D 2009 J. Colloid Interface Sci. 336 273

    [29]

    Georgieva D, Cagna A, Langevin D 2009 Soft Matter 5 2063

    [30]

    Bergeron V 1997 Langmuir 13 3474

    [31]

    Panaiotov I, Dimitrov D S, Ter-Minassian-Saraga L 1979 J. Colloid Interface Sci. 72 49

    [32]

    Park C W 1991 J. Colloid Interface Sci. 146 382

    [33]

    Zhao Y P 2012 Physical Mechanics of Surface and Interface (Beijing: Science Press) p185, 186 (in Chinese) [赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第185, 186页]

    [34]

    Naire S, Braun R J, Snow S A 2000 J. Colloid Interface Sci. 230 91

    [35]

    Heidari A H, Braun R J, Hirsa A H, Snow S A, Naire S 2002 J. Colloid Interface Sci. 253 295

    [36]

    Ruschak K J 2010 Aiche J. 24 705

    [37]

    Vitasari D, Grassia P, Martin P 2016 Appl. Math. Model. 40 1941

    [38]

    Berg S, Adelizzi E A, Troian S M 2005 Langmuir 21 3867

    [39]

    Schwartz L W, Roy R V 1999 J. Colloid. Interface Sci. 218 309

    [40]

    Saulnier L, Boos J, Stubenrauch C, Rio E 2014 Soft Matter 10 7117

  • [1]

    Wang J, Nguyen A V, Farrokhpay S 2015 Adv. Colloid Interface 228 55

    [2]

    Bournival G, Du Z, Ata S, Jameson G J 2014 Chem. Eng. Sci. 116 536

    [3]

    Firouzi M, Nguyen A V 2014 Adv. Powder Technol. 25 1212

    [4]

    Wang L, Yoon R H 2008 Int. J. Miner. Process. 85 101

    [5]

    Wang J, Nguyen A V, Farrokhpay S 2016 Colloid Surface A 488 70

    [6]

    Sett S, Sinharay S, Yarin A L 2013 Langmuir 29 4934

    [7]

    Wang L, Yoon R H 2006 Colloid Surface A 282 84

    [8]

    Mysels K J, Cox M C, Skewis J D 1961 J. Phys. Chem. 65 1107

    [9]

    Champougny L, Scheid B, Restagno F, Vermant J, Rio E 2015 Soft Matter 11 2758

    [10]

    Saulnier L, Champougny L, Bastien G, Restagno F, Langevin D, Rio E 2014 Soft Matter 10 2899

    [11]

    Liggieri L, Attolini V, Ferrari M, Ravera F 2002 J. Colloid Interface Sci. 255 225

    [12]

    Persson C M, Claesson P M, Lunkenheimer K 2002 J. Colloid Interface Sci. 251 182

    [13]

    Karakashev S I, Ivanova D S, Angarska Z K, Manev E D, Tsekov R, Radoev B, Slavchov R, Nguyen A V 2010 Colloid Surface A 365 122

    [14]

    Seiwert J, Dollet B, Cantat I 2014 J. Fluid Mech. 739 124

    [15]

    Exerowa D, Zacharieva M, Cohen R, Platikanov D 1979 Colloid Polym. Sci. 257 1089

    [16]

    Churaev N V 2003 Colloid J. 103 197

    [17]

    Manev E D, Pugh R J 1991 Langmuir 7 2253

    [18]

    Bhakta A, Ruckenstein E 1997 J. Colloid Interface Sci. 191 184

    [19]

    Carey E, Stubenrauch C 2010 J. Colloid Interface Sci. 343 314

    [20]

    Buchavzov N, Stubenrauch C 2007 Langmuir 23 5315

    [21]

    Stubenrauch C, Schlarmann J, Strey R 2002 Phys. Chem. Chem. Phys. 4 4504

    [22]

    Karakashev S I, Ivanova D S 2010 J. Colloid Interface Sci. 343 584

    [23]

    Teletzke G F, Davis H T, Scriven L E 1988 Rev. Phys. Appl. 23 989

    [24]

    Mitlin V S, Petviashvili N V 1994 Phys. Lett. A 192 323

    [25]

    Frastia L, Archer A J, Thiele U 2012 Soft Matter 8 11363

    [26]

    Ye X M, Yang S D, Li C X 2017 Acta Phys. Sin. 66 184702 (in Chinese) [叶学民, 杨少东, 李春曦 2017 物理学报 66 184702]

    [27]

    Ye X M, Yang S D, Li C X 2017 Acta Phys. Sin. 66 194701 (in Chinese) [叶学民, 杨少东, 李春曦 2017 物理学报 66 194701]

    [28]

    Tabakova S S, Danov K D 2009 J. Colloid Interface Sci. 336 273

    [29]

    Georgieva D, Cagna A, Langevin D 2009 Soft Matter 5 2063

    [30]

    Bergeron V 1997 Langmuir 13 3474

    [31]

    Panaiotov I, Dimitrov D S, Ter-Minassian-Saraga L 1979 J. Colloid Interface Sci. 72 49

    [32]

    Park C W 1991 J. Colloid Interface Sci. 146 382

    [33]

    Zhao Y P 2012 Physical Mechanics of Surface and Interface (Beijing: Science Press) p185, 186 (in Chinese) [赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第185, 186页]

    [34]

    Naire S, Braun R J, Snow S A 2000 J. Colloid Interface Sci. 230 91

    [35]

    Heidari A H, Braun R J, Hirsa A H, Snow S A, Naire S 2002 J. Colloid Interface Sci. 253 295

    [36]

    Ruschak K J 2010 Aiche J. 24 705

    [37]

    Vitasari D, Grassia P, Martin P 2016 Appl. Math. Model. 40 1941

    [38]

    Berg S, Adelizzi E A, Troian S M 2005 Langmuir 21 3867

    [39]

    Schwartz L W, Roy R V 1999 J. Colloid. Interface Sci. 218 309

    [40]

    Saulnier L, Boos J, Stubenrauch C, Rio E 2014 Soft Matter 10 7117

  • [1] He Hua-Dan, Zhong Qi-Chao, Xie Wen-Jun. Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops. Acta Physica Sinica, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] Wang Kai-Yu, Pang Xiang-Long, Li Xiao-Guang. Oscillation properties of water droplets on a superhydrophobic surface and their correlations with droplet volume. Acta Physica Sinica, 2021, 70(7): 076801. doi: 10.7498/aps.70.20201771
    [3] Cheng Xiao-Xiao, Liu Jian-Guo, Xu Liang, Xu Han-Yang, Jin Ling, Shu Sheng-Quan, Xue Ming. Pollution gas concentration and diffusion model in shale gas flowback fluid. Acta Physica Sinica, 2021, 70(13): 130202. doi: 10.7498/aps.70.20210017
    [4] Zhang Peng-Cheng, Fang Wen-Yu, Bao Lei, Kang Wen-Bin. Theoretical and computational methods of protein liquid-liquid phase separation. Acta Physica Sinica, 2020, 69(13): 138701. doi: 10.7498/aps.69.20200438
    [5] Yang Ya-Jing, Mei Chen-Xi, Zhang Xu-Dong, Wei Yan-Ju, Liu Sheng-Hua. Kinematics and passing modes of a droplet impacting on a soap film. Acta Physica Sinica, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [6] Li Chun-Xi, Shi Zhi-Xian, Zhuang Li-Yu, Ye Xue-Min. Effect of surfactants on thin film spreading under influence of surface acoustic wave. Acta Physica Sinica, 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [7] Ye Xue-Min, Li Ming-Lan, Zhang Xiang-Shan, Li Chun-Xi. Effect of surface elasticity on drainage process of vertical liquid film with soluble surfactant. Acta Physica Sinica, 2018, 67(21): 214703. doi: 10.7498/aps.67.20181020
    [8] Ye Xue-Min, Yang Shao-Dong, Li Chun-Xi. Effect of concentration-dependent disjoining pressure on drainage process of vertical liquid film. Acta Physica Sinica, 2017, 66(18): 184702. doi: 10.7498/aps.66.184702
    [9] Ye Xue-Min, Yang Shao-Dong, Li Chun-Xi. Synergistic effects of disjoining pressure and surface viscosity on film drainage process. Acta Physica Sinica, 2017, 66(19): 194701. doi: 10.7498/aps.66.194701
    [10] Sang Yong-Jie, Lan Yu, Ding Yue-Wen. Study on elastic-wall fluid cavity resonant frequency of Helmholtz underwater acoustic transducer. Acta Physica Sinica, 2016, 65(2): 024301. doi: 10.7498/aps.65.024301
    [11] Huang Hu, Hong Ning, Liang Hong, Shi Bao-Chang, Chai Zhen-Hua. Lattice Boltzmann simulation of the droplet impact onto liquid film. Acta Physica Sinica, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [12] Wu Zheng-Ren, Liu Mei, Liu Qiu-Sheng, Song Zhao-Xia, Wang Si-Si. Influence of the inclined waving wall on the surface wave evolution of liquid film. Acta Physica Sinica, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [13] Wang Song-Ling, Liu Mei, Wang Si-Si, Wu Zheng-Ren. Influence of uneven wall changing over time on the characteristics of liquid surface wave evolution. Acta Physica Sinica, 2015, 64(1): 014701. doi: 10.7498/aps.64.014701
    [14] Liang Gang-Tao, Shen Sheng-Qiang, Guo Ya-Li, Chen Jue-Xian, Yu Huan, Li Yi-Qiao. Special phenomena of droplet impact on an inclined wetted surface with experimental observation. Acta Physica Sinica, 2013, 62(8): 084707. doi: 10.7498/aps.62.084707
    [15] Li Chun-Xi, Jiang Kai, Ye Xue-Min. Stability characteristics of thin film dewetting with insoluble surfactant. Acta Physica Sinica, 2013, 62(23): 234702. doi: 10.7498/aps.62.234702
    [16] Guo Jia-Hong, Dai Shi-Qiang, Dai Qin. Experimental research on the droplet impacting on the liquid film. Acta Physica Sinica, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [17] Zhou Feng-Mao, Sun Dong-Ke, Zhu Ming-Fang. Lattice Boltzmann modelling of liquid-liquid phase separation of monotectic alloys. Acta Physica Sinica, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [18] Min Jing-Chun. Pressure difference between inside and outside of a drop and its critical radius in dropwise condensation. Acta Physica Sinica, 2002, 51(12): 2730-2732. doi: 10.7498/aps.51.2730
    [19] PU XIAO-YUN, LIU QING-JU, ZHANG ZHONG-MING, LIN LI-ZHONG. STUDY OF USING PENDANT DROP TECHNIQUE IN LANGMUIR-BLODGETT FILMS. Acta Physica Sinica, 1998, 47(1): 60-67. doi: 10.7498/aps.47.60
    [20] Li Biao, Zhu Jun-Hao, Chen Xin-Qiang, Liu Kun, Cao Ju-Ying, Tang Ding-Yuan. . Acta Physica Sinica, 1995, 44(6): 853-861. doi: 10.7498/aps.44.853
Metrics
  • Abstract views:  7204
  • PDF Downloads:  108
  • Cited By: 0
Publishing process
  • Received Date:  23 February 2018
  • Accepted Date:  12 May 2018
  • Published Online:  20 August 2019

/

返回文章
返回