搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面弹性对含可溶性活性剂垂直液膜排液的影响

叶学民 李明兰 张湘珊 李春曦

引用本文:
Citation:

表面弹性对含可溶性活性剂垂直液膜排液的影响

叶学民, 李明兰, 张湘珊, 李春曦

Effect of surface elasticity on drainage process of vertical liquid film with soluble surfactant

Ye Xue-Min, Li Ming-Lan, Zhang Xiang-Shan, Li Chun-Xi
PDF
导出引用
  • 针对含可溶性活性剂的垂直液膜排液过程,在考虑表面弹性作用的基础上,采用润滑理论建立了液膜厚度、表面速度、表面和内部活性剂浓度的演化方程组,通过数值计算分析了表面弹性和活性剂溶解度耦合作用下的液膜演化特征.结果表明:表面弹性是影响可溶性活性剂垂直液膜排液过程中必不可少的因素.排液初期,随表面弹性增加,液膜初始厚度增大,表面更趋于刚性化.随排液进行,弹性不同的液膜呈现不同的典型排液特征:当弹性较小时,液膜上部表面张力高,下部表面张力低,产生正向的马兰戈尼效应,与重力作用相抗衡.当弹性较大时,膜上部表面张力低,下部表面张力高,产生逆向的马兰戈尼效应,促使液膜排液加速,更易发生失稳.活性剂溶解度通过控制液膜表面的活性剂分子吸附量,进而影响表面弹性:当活性剂溶解度较大时,液膜厚度较小,很快发生破断;随溶解度降低,液膜稳定性增加,初始表面弹性也随之增大,并随液膜变薄逐渐接近极限膨胀弹性值.
    The aim of the present paper is to investigate the gravity-driven draining process containing soluble surfactant when considering the coupling effects of surface elasticity and surfactant solubility. A nonlinear coupling evolution equation including liquid film thickness, surface velocity and surfactant concentration (both on the surface and in the bulk) is established based on the lubrication theory. Assuming that the top of liquid film is attached to the wireframe and the bottom is connected to a reservoir, the drainage evolution is simulated with the software called FreeFem. The effects of surface elasticity and solubility on liquid film draining are discussed under their coupling. The simulation results show that the surface elasticity is an indispensable factor in the process of liquid film drainage with soluble surfactant, and the surfactant solubility also has an important influence on the process. At the initial stage of liquid draining, the initial thickness of liquid film increases with increasing surface elasticity, and the surface tends to be more rigid; with the drainage proceeding, the liquid film with high and low elasticity illustrate different notable draining features:in the case of low surface elasticity, the distribution of surfactant forms a surface tension gradient from top to bottom on the film surface, leading to positive Marangoni effect that counteracts gravity. However, in the case of high elasticity, the film surface presents a surface tension gradient from bottom to top, resulting in a reverse Marangoni effect, which accelerates the draining and makes the film more susceptible to instability. The solubility of surfactant dominates the number of adsorbent molecules on the film surface, which affects the surface elasticity. When the solubility of the surfactant is great (β → 0), the film is extremely unstable, and it breaks down quickly. As the solubility decreases (namely, β increases), the stability of the film increases, and the initial surface elasticity also rises. The surface elasticity gradually approaches to the limiting dilational elasticity modulus due to the film being thinner.
      通信作者: 李春曦, leechunxi@163.com
    • 基金项目: 国家自然科学基金(批准号:11202079)和中央高校基本科研业务费(批准号:13MS97)资助的课题.
      Corresponding author: Li Chun-Xi, leechunxi@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202079) and the Fundamental Research for the Central Universities, China (Grant No. 13MS97).
    [1]

    Warner M R E, Craster R V, Matar O K 2004 Phys. Fluids 16 2933

    [2]

    Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interface Sci. 144 54

    [3]

    Afsar-Siddiqui A B, Luckham P F, Matar O K 2003 Adv. Colloid Interface Sci. 106 183

    [4]

    Xe J N 2007 Int. Med. Health Guid. News 13 44 (in Chinese)[谢绛凝 2007 国际医药卫生导报 13 44]

    [5]

    Couder Y, Chomaz J M, Rabaud M 1989 Physica D 37 384

    [6]

    Langevin D 2014 Annu. Rev. Fluid Mech. 46 47

    [7]

    Lucassen-Reynders E H, Cagna A, Lucassen J 2001 Colloids Surf. A 186 63

    [8]

    Mysels K J, Shinoda K, Frankel S 1959 Soap Films: Studies of Their Thinning and a Bibilography (New York: Pergammon) p116

    [9]

    Naire S, Braun R J, Snow S A 2001 Phys. Fluids 13 2492

    [10]

    Ye X M, Yang S D, Li C X 2017 Acta Phys. Sin. 66 184702 (in Chinese)[叶学民, 杨少东, 李春曦 2017 物理学报 66 184702]

    [11]

    Schwartz L W, Roy R V 1999 J. Colloid Interface Sci. 218 309

    [12]

    Seiwert J, Benjamin D, Isabelle C 2014 J. Fluid Mech. 739 124

    [13]

    Ye X M, Yang S D, Li C X 2017 Acta Phys. Sin. 66 194701 (in Chinese)[叶学民, 杨少东, 李春曦 2017 物理学报 66 194701]

    [14]

    Ye X M, Li M L, Zhang X S, Li C X 2018 Acta Phys. Sin. 67 164701 (in Chinese)[叶学民, 李明兰, 张湘珊, 李春曦 2018 物理学报 67 164701]

    [15]

    Yiantsios S G, Higgins B G 2010 Phys. Fluids 22 022102

    [16]

    Lin C K, Hwang C C, Uen W Y 2000 J. Colloid Interface Sci. 231 379

    [17]

    Shi D, Gu H X, Liu X Y, Fan Q L 2004 China Surf. Deterg. Cosmet. 34 229 (in Chinese) [史东, 谷惠先, 刘晓英, 樊全莲 2004 日用化学工业 34 229]

    [18]

    Luo J, Gao B J, Wang J F, Cao Y, Yuan H 2000 Acta Polym. Sin. 1 262 (in Chinese) [罗娟, 高保娇, 王久芬, 曹远, 袁宏 2000 高分子学报 1 262]

    [19]

    Bergeron V 1997 Langmuir 13 3474

    [20]

    Monroy F, Kahn J G, Langevin D 1998 Colloids Surf. A 143 251

    [21]

    Lucassen J, Tempel M V D 1972 Chem. Eng. Sci. 27 1283

    [22]

    Santini E, Ravera F, Ferrari M, Stubenrauch C, Makievski A, Krägel J 2007 Colloids Surf. A 298 12

    [23]

    Beneventi D, Pugh R J, Carré B, Gandini A 2003 J. Colloid Interface Sci. 268 221

    [24]

    Georgieva D, Cagna A, Langevin D 2009 Soft Matter 5 2063

    [25]

    Wang L, Yoon R H 2008 Int. J. Miner. Process. 85 101

    [26]

    Wang L, Yoon R H 2006 Colloids Surf. A 282 84

    [27]

    Karakashev S I, Ivanova D S 2010 J. Colloid Interface Sci. 343 584

    [28]

    Champougny L, Scheid B, Restagno F, Vermant J, Rio E 2015 Soft Matter 11 2758

    [29]

    Seiwert J, Cantat I 2015 Colloids Surf. A 473 2

    [30]

    Jensen O E, Grotberg J B 1993 Phys. Fluids A 5 58

    [31]

    Zhao Y P 2012 Physical Mechanics of Surface and Interface (Beijing: Science Press) pp185, 186 (in Chinese)[赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第185, 186 页]

    [32]

    Afsarsiddiqui A B, And P F L, Matar O K 2003 Langmuir 19 703

    [33]

    Ruschak K J 2010 Aiche J. 33 801

    [34]

    Saulnier L, Restagno F, Delacotte J, Langevin D, Rio E 2011 Langmuir 27 13406

    [35]

    Angarska J K, Ivanova D S, Manev E D 2015 Colloids Surf. A 481 87

    [36]

    Xiong Z 2012 Farm Prod. Process. 3 67 (in Chinese)[熊拯 2012 农产品加工 3 67]

    [37]

    Xiong Y, Chen D J, Wang J, Zhang Q, Wu W G, Yao Y 2008 J. Oil Gas Techn. 30 136 (in Chinese)[熊颖, 陈大钧, 王君, 张谦, 吴文刚, 尧艳 2008 石油天然气学报 30 136]

    [38]

    Kumar N, Couzis A, Maldarelli C 2003 J. Colloid Interface Sci. 267 272

    [39]

    Hsu C, Chang C, Lin S 1999 Langmuir 15 1952

    [40]

    Berg S, Adelizzi E A, Troian S M 2005 Langmuir 21 3867

    [41]

    Karakashev S I, Nguyen A V 2007 Colloids Surf. A 293 229

  • [1]

    Warner M R E, Craster R V, Matar O K 2004 Phys. Fluids 16 2933

    [2]

    Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interface Sci. 144 54

    [3]

    Afsar-Siddiqui A B, Luckham P F, Matar O K 2003 Adv. Colloid Interface Sci. 106 183

    [4]

    Xe J N 2007 Int. Med. Health Guid. News 13 44 (in Chinese)[谢绛凝 2007 国际医药卫生导报 13 44]

    [5]

    Couder Y, Chomaz J M, Rabaud M 1989 Physica D 37 384

    [6]

    Langevin D 2014 Annu. Rev. Fluid Mech. 46 47

    [7]

    Lucassen-Reynders E H, Cagna A, Lucassen J 2001 Colloids Surf. A 186 63

    [8]

    Mysels K J, Shinoda K, Frankel S 1959 Soap Films: Studies of Their Thinning and a Bibilography (New York: Pergammon) p116

    [9]

    Naire S, Braun R J, Snow S A 2001 Phys. Fluids 13 2492

    [10]

    Ye X M, Yang S D, Li C X 2017 Acta Phys. Sin. 66 184702 (in Chinese)[叶学民, 杨少东, 李春曦 2017 物理学报 66 184702]

    [11]

    Schwartz L W, Roy R V 1999 J. Colloid Interface Sci. 218 309

    [12]

    Seiwert J, Benjamin D, Isabelle C 2014 J. Fluid Mech. 739 124

    [13]

    Ye X M, Yang S D, Li C X 2017 Acta Phys. Sin. 66 194701 (in Chinese)[叶学民, 杨少东, 李春曦 2017 物理学报 66 194701]

    [14]

    Ye X M, Li M L, Zhang X S, Li C X 2018 Acta Phys. Sin. 67 164701 (in Chinese)[叶学民, 李明兰, 张湘珊, 李春曦 2018 物理学报 67 164701]

    [15]

    Yiantsios S G, Higgins B G 2010 Phys. Fluids 22 022102

    [16]

    Lin C K, Hwang C C, Uen W Y 2000 J. Colloid Interface Sci. 231 379

    [17]

    Shi D, Gu H X, Liu X Y, Fan Q L 2004 China Surf. Deterg. Cosmet. 34 229 (in Chinese) [史东, 谷惠先, 刘晓英, 樊全莲 2004 日用化学工业 34 229]

    [18]

    Luo J, Gao B J, Wang J F, Cao Y, Yuan H 2000 Acta Polym. Sin. 1 262 (in Chinese) [罗娟, 高保娇, 王久芬, 曹远, 袁宏 2000 高分子学报 1 262]

    [19]

    Bergeron V 1997 Langmuir 13 3474

    [20]

    Monroy F, Kahn J G, Langevin D 1998 Colloids Surf. A 143 251

    [21]

    Lucassen J, Tempel M V D 1972 Chem. Eng. Sci. 27 1283

    [22]

    Santini E, Ravera F, Ferrari M, Stubenrauch C, Makievski A, Krägel J 2007 Colloids Surf. A 298 12

    [23]

    Beneventi D, Pugh R J, Carré B, Gandini A 2003 J. Colloid Interface Sci. 268 221

    [24]

    Georgieva D, Cagna A, Langevin D 2009 Soft Matter 5 2063

    [25]

    Wang L, Yoon R H 2008 Int. J. Miner. Process. 85 101

    [26]

    Wang L, Yoon R H 2006 Colloids Surf. A 282 84

    [27]

    Karakashev S I, Ivanova D S 2010 J. Colloid Interface Sci. 343 584

    [28]

    Champougny L, Scheid B, Restagno F, Vermant J, Rio E 2015 Soft Matter 11 2758

    [29]

    Seiwert J, Cantat I 2015 Colloids Surf. A 473 2

    [30]

    Jensen O E, Grotberg J B 1993 Phys. Fluids A 5 58

    [31]

    Zhao Y P 2012 Physical Mechanics of Surface and Interface (Beijing: Science Press) pp185, 186 (in Chinese)[赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第185, 186 页]

    [32]

    Afsarsiddiqui A B, And P F L, Matar O K 2003 Langmuir 19 703

    [33]

    Ruschak K J 2010 Aiche J. 33 801

    [34]

    Saulnier L, Restagno F, Delacotte J, Langevin D, Rio E 2011 Langmuir 27 13406

    [35]

    Angarska J K, Ivanova D S, Manev E D 2015 Colloids Surf. A 481 87

    [36]

    Xiong Z 2012 Farm Prod. Process. 3 67 (in Chinese)[熊拯 2012 农产品加工 3 67]

    [37]

    Xiong Y, Chen D J, Wang J, Zhang Q, Wu W G, Yao Y 2008 J. Oil Gas Techn. 30 136 (in Chinese)[熊颖, 陈大钧, 王君, 张谦, 吴文刚, 尧艳 2008 石油天然气学报 30 136]

    [38]

    Kumar N, Couzis A, Maldarelli C 2003 J. Colloid Interface Sci. 267 272

    [39]

    Hsu C, Chang C, Lin S 1999 Langmuir 15 1952

    [40]

    Berg S, Adelizzi E A, Troian S M 2005 Langmuir 21 3867

    [41]

    Karakashev S I, Nguyen A V 2007 Colloids Surf. A 293 229

  • [1] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋. 表面活性剂液滴过渡沸腾的Marangoni效应与二次液滴形成. 物理学报, 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [2] 杨颖, 宋俊杰, 万明威, 高靓辉, 方维海. 分子层次的金纳米棒-表面活性剂-磷脂自组装复合体形貌. 物理学报, 2020, 69(24): 248701. doi: 10.7498/aps.69.20200979
    [3] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响. 物理学报, 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [4] 李春曦, 施智贤, 庄立宇, 叶学民. 活性剂对表面声波作用下薄液膜铺展的影响. 物理学报, 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [5] 叶学民, 李明兰, 张湘珊, 李春曦. 表面弹性和分离压耦合作用下的垂直液膜排液过程. 物理学报, 2018, 67(16): 164701. doi: 10.7498/aps.67.20180349
    [6] 叶学民, 杨少东, 李春曦. 分离压和表面黏度的协同作用对液膜排液过程的影响. 物理学报, 2017, 66(19): 194701. doi: 10.7498/aps.66.194701
    [7] 叶学民, 杨少东, 李春曦. 随活性剂浓度变化的分离压对垂直液膜排液过程的影响. 物理学报, 2017, 66(18): 184702. doi: 10.7498/aps.66.184702
    [8] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [9] 吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思. 倾斜波动壁面上液膜表面波演化特性的影响. 物理学报, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [10] 王松岭, 刘梅, 王思思, 吴正人. 随时间变化的非平整壁面对液膜表面波演化特性的影响. 物理学报, 2015, 64(1): 014701. doi: 10.7498/aps.64.014701
    [11] 戴剑锋, 樊学萍, 蒙波, 刘骥飞. 单液滴撞击倾斜液膜飞溅过程的耦合Level Set-VOF模拟. 物理学报, 2015, 64(9): 094704. doi: 10.7498/aps.64.094704
    [12] 李春曦, 陈朋强, 叶学民. 含活性剂液滴在倾斜粗糙壁面上的铺展稳定性. 物理学报, 2015, 64(1): 014702. doi: 10.7498/aps.64.014702
    [13] 李春曦, 陈朋强, 叶学民. 连续凹槽基底对含非溶性活性剂薄液膜流动特性的影响. 物理学报, 2014, 63(22): 224703. doi: 10.7498/aps.63.224703
    [14] 李春曦, 裴建军, 叶学民. 倾斜粗糙壁面上含不溶性活性剂溶液的动力学特性. 物理学报, 2013, 62(21): 214704. doi: 10.7498/aps.62.214704
    [15] 何峰, 王志军, 黄义辉, 叶鹏, 王锦程. 存在液膜的毛细蒸发过程研究. 物理学报, 2013, 62(24): 246401. doi: 10.7498/aps.62.246401
    [16] 梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥. 实验观测液滴撞击倾斜表面液膜的特殊现象. 物理学报, 2013, 62(8): 084707. doi: 10.7498/aps.62.084707
    [17] 李春曦, 姜凯, 叶学民. 含活性剂液膜去润湿演化的稳定性特征. 物理学报, 2013, 62(23): 234702. doi: 10.7498/aps.62.234702
    [18] 李春曦, 裴建军, 叶学民. 波纹基底上含不溶性活性剂液滴的铺展稳定性. 物理学报, 2013, 62(17): 174702. doi: 10.7498/aps.62.174702
    [19] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [20] 普小云, 柳清菊, 张中明, 林理忠. 表面单分子膜的垂悬液滴方法研究. 物理学报, 1998, 47(1): 60-67. doi: 10.7498/aps.47.60
计量
  • 文章访问数:  5721
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-25
  • 修回日期:  2018-07-03
  • 刊出日期:  2018-11-05

/

返回文章
返回