-
本文利用基于相场理论的格子Boltzmann方法研究了匀强电场作用下含可溶性表面活性剂液滴的动力学行为.我们首先通过模拟静态液滴表面活性剂浓度分布和漏电介质液滴在电场作用下形变两个基准问题验证了方法的可靠性.其次,本文重点研究了含表面活性剂液滴在电场作用下的形变、破裂和聚合行为.研究发现:对于形变行为,单液滴存在扁长型和扁平型两种形变模式,表面活性剂浓度越高,液滴形变越大;对于破裂行为,单液滴存在细丝状和窄颈状两种破裂模式,含表面活性剂的液滴更容易发生破裂行为;对于聚合行为,双液滴存在形变聚合和吸引聚合两种过程,表面活性剂促进其形变聚合,但抑制其吸引聚合.
-
关键词:
- 格子Boltzmann方法 /
- 可溶性表面活性剂 /
- 漏电介质液滴
This paper adopts the phase-field based lattice Boltzmann (LB) method to study the dynamic behavior of soluble surfactant-laden droplets in a uniform electric field. Firstly, two benchmark problems including the surfactant concentration distribution of static droplet and the deformation of leaky dielectric droplet in an electric field, are used to test the capacity of LB method. Then, we focuse on investigating the deformation, breakup, and coalescence behaviors of surfactant-laden droplets in an electric field. The results show that: (1) For the deformation behavior, the single droplet exhibits two distinct deformation modes: prolate and oblate shapes. Higher electric capillary number and bulk surfactant concentration both lead to greater droplet deformation. (2) For the breakup behavior, the single droplet exhibits two distinct breakup modes: filamentous and conical jetting breakup. The droplet with surfactants is more like to breakup. More specifically, surfactants reduce the retraction degree of the main droplet after filamentous breakup, while it increase the number of satellite droplets formed at the main droplet ends after jetting breakup. (3) For the coalescence behavior, the double droplets exhibit two distinct processes: deformation coalescence and attractive coalescence. A higher electric capillary number facilitates droplet coalescence. Surfactants promote deformation coalescence while retarding attractive coalescence, but the promotional effect dominates. Consequently, a higher bulk surfactant concentration enhances the propensity for the droplet coalescence. -
[1] Salipante P F, Vlahovska P M 2010 Phys. Fluids 22 112110
[2] Stone H A, Stroock A D, Ajdari A 2004 Annu. Rev. Fluid Mech. 36 381
[3] Manikantan H, Squires T M 2020 J. Fluid Mech. 892 1
[4] O’konski C T, Thacher H C 1953 J. Phys. Chem. 57 955
[5] Taylor G 1966 Proc. R. Soc. Lond. A 291 159
[6] Sherwood J D 1988 J. Fluid Mech. 188 133
[7] Tomar G, Gerlach D, Biswas G, Alleborn N, Sharma A, Durst F, Welch S W J, Delgado A 2007 J. Comput. Phys. 227 1267
[8] Hua J S, Lim L K, Wang C H 2008 Phys. Fluids 20 113302
[9] Teigen K E, Munkejord S T 2009 IEEE Trans. Dielectr. Electr. Insul. 16 475
[10] Lin Y, Skjetne P, Carlson A 2012 Int. J. Multiphase Flow 45 1
[11] Fakhari A, Bolster D 2017 J. Comput. Phys. 334 620
[12] Yang Q, Li B Q, Ding Y 2013 Int. J. Multiphase Flow 57 1
[13] Novick-Cohen A 2008 vol. 4 of Handbook of Differential Equations: Evolutionary Equations (Amsterdam: North-Holland), p 201
[14] Liu X, Chai Z H, Shi B C 2019 Phys. Fluids 31 092103
[15] Liu X, Chai Z H, Shi B C 2021 Commun. Comput. Phys. 30 1346
[16] Liu X, Chai Z H, Shi B C, Yuan X L 2024 Physica D 468 134294
[17] Feng J Q 2002 J. Colloid Interface Sci. 246 112
[18] Cui Y T, Wang N N, Liu H H 2019 Phys. Fluids 31 022105
[19] Baret J C 2012 Lab Chip 12 422
[20] Anna S L 2016 Annu. Rev. Fluid Mech. 48 285
[21] Liu H, Zhang Y 2010 J. Comput. Phys. 229 9166
[22] Ceniceros H D 2003 Phys. Fluids 15 245
[23] Wooding R A, Morel-Seytoux H J 1976 Annu. Rev. Fluid Mech. 8 233
[24] van der Sman R G M, van der Graaf S 2006 Rheol. Acta 46 3
[25] Liu H H, Zhang Y H 2010 J. Comput. Phys. 229 9166
[26] van der Sman R G M, Meinders M B J 2016 Comput. Phys. Commun. 199 12
[27] Shi Y, Tang G H, Cheng L H, Shuang H Q 2019 Comput. Fluids 179 508
[28] Zong Y J, Zhang C H, Liang H, Wang L, Xu J R 2020 Phys. Fluids 32 122105
[29] Ha J W, Yang S M 1995 J. Colloid Interface Sci. 175 369
[30] Nganguia H, Young Y N, Vlahovska P M, Blawzdziewicz J, Zhang J, Lin H 2013 Phys. Fluids 25 092106
[31] Painuly R, Kumar S, Anand V 2024 Colloids Surf. A. 697 134389
[32] Teigen K E, Munkejord S T 2010 Phys. Fluids 22 112104
[33] Sorgentone C, Tornberg A, Vlahovska P M 2019 J. Comput. Phys. 389 111
[34] Ha J W, Yang S M 1998 J. Colloid Interface Sci. 206 195
[35] Li N, Pang Y, Sun Z, Li W, Sun Y, Sun X, Liu Y, Li B, Wang Z, Zeng H 2024 Fuel 358 130328
[36] Wang H L, Chai Z H, Shi B C, Liang H 2016 Phys. Rev. E 94 033304
[37] Soligo G, Roccon A, Soldati A 2019 J. Comput. Phys. 376 1292
[38] Yun A, Li Y, Kim J 2014 Appl. Math. Comput. 229 422
[39] Chang C H, Franses E I 1995 Colloids Surf. A 100 1
[40] Qian Y H, D’Humières D, Lallemand P 1992 EPL 17 479
[41] Guo Z L, Shu C 2013 Lattice Boltzmann method and its application in engineering, vol. 3 (Singapore: World Scientific), pp 35-59
[42] Dong Q, Sau A 2018 Phys. Rev. Fluids 3 073701
计量
- 文章访问数: 16
- PDF下载量: 0
- 被引次数: 0