搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超快太赫兹散射型扫描近场光学显微镜

王有为 马一航 王嘉毅 汪子权 饶馨予 代明聪 黄滋宇 吴晓君

引用本文:
Citation:

超快太赫兹散射型扫描近场光学显微镜

王有为, 马一航, 王嘉毅, 汪子权, 饶馨予, 代明聪, 黄滋宇, 吴晓君

Ultrafast Terahertz Scattering Scanning Near-field Optical Microscope

WANG Youwei, MA Yihang, WANG Jiayi, WANG Ziquan, RAO Xinyu, DAI Mingcong, HUANG Ziyu, Wu Xiaojun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 纳米尺度下的太赫兹(THz)时域光谱与成像技术对于材料研究和器件检测等至关重要。然而,受限于THz波波长衍射极限的限制,传统的远场THz时域光谱与成像技术无法提供飞秒时间尺度和纳米空间分辨的载流子浓度分布和超快动力学过程研究。本文介绍了基于超快THz时域光谱成像技术与扫描探针技术耦合的超快THz散射型扫描近场光学显微镜系统。利用针尖与样品表面的近场相互作用,该近场系统已被证实可以以~60 nm横向空间分辨率的静态THz光谱实现半导体材料和器件研究,进而获得半导体材料和器件的静态THz电导率分布情况,而且还可以通过光激发瞬态载流子的方式,获得半导体材料的瞬态电导率和激光THz发射超快动力学过程,为研究材料和器件在纳米空间分辨,超快时间分辨和THz谱学成像方面的性能提供了有力支持。
    Terahertz (THz) time-domain spectroscopy and imaging techniques at the nanoscale are imperative for materials research and devices detection, among others. However, conventional far-field THz time-domain spectroscopy faces inherent diffraction limits, restricting applications requiring femtosecond temporal resolution and nanoscale spatial precision for carrier dynamics analysis. We present a scattering-type scanning near-field optical microscopy that overcomes these constraints by combining ultrafast THz time-domain spectroscopy with AFM. The utilization of the near-field interaction between the needle's tip and the sample's surface has been demonstrated to facilitate the study of semiconductor materials and devices with static THz spectroscopy at a lateral spatial resolution of ~60 nm. This, in turn, enables the acquisition of static THz conductivity distributions of the semiconductor materials. Additionally, it facilitates the acquisition of transient conductivity distributions of semiconductor materials and laser THz emission ultrafast via photoexcited transient carrier kinetic processes. This aspect provides substantial support for the study of the performance of materials and devices in nanometer spatial resolution, ultrafast time resolution, and THz spectroscopic imaging.The experimental results show that the system has a signal-to-noise ratio as high as 56.34 dB in the static THz time-domain spectral mode, and can effectively extract the fifth-order harmonic signals covering the 0.2-2.2 THz frequency band with a spatial resolution of up to ~60 nm. Carrier excitation and complexation processes in topological insulators have been successfully observed by optical pump-THz probe with a time resolution better than 100 fs. Imaging of SRAM samples by the system reveals differences in THz scattering intensity due to non-uniformity in doping concentration, validating its potential for nanoscale defect detection.This study not only provides an innovative means for the study of nanoscale electrical characterization of semiconductor materials and devices, but also opens up new avenues for the application of THz technology in interdisciplinary subjects such as nanophotonics and spintronics. In the future, the temporal and spatial resolution and detection efficiency of the system are expected to be further improved by integrating the superlens technology, optimizing the probe design and introducing deep learning algorithms.
  • [1]

    Chen X L, Ma M W, Yang X M, Yang K, Ji T, Wu S W, Zhu Z Y 2008Acta Phys.-Chem. Sin. 24 1969(in Chinese) [陈西良,马明旺,杨小敏,杨康,吉特,吴胜伟,朱智勇2008物理化学学报24 1969]

    [2]

    Cocker T L, Jelic V, Hillenbrand R, Hegmann F 2021Nat. Photon. 15 558

    [3]

    Jepsen P U, Cooke D G, Koch M 2011Laser Photon. Rev. 5 124

    [4]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011Rev. Mod. Phys. 83 543

    [5]

    Kampfrath T, Tanaka K, Nelson, K A 2013Nat. Photon. 7 680

    [6]

    Lloyd-Hughes J 2005Phys. Rev. B 71 195301

    [7]

    Beard M C, Turner G M, Schmuttenmaer C A 2000Phys. Rev. B 62 15764

    [8]

    Xing X, Zhao L T, Zhang Z Y, Liu X K, Zhang K L, Yu Y, Lin X, Chen H Y, Chen J Q, Jin Z M, Xu J H, Ma G H 2017J. Phys. Chem. C 12120451

    [9]

    Knoll B, Keilmann F, Kramer A, Guckenberger R 1997Appl. Phys. Lett. 70 2667

    [10]

    Lahrech A, Bachelot R, Gleyzes P, Boccara A C 1996Opt. Lett. 211315

    [11]

    Knoll B, Keilmann F 1999Nature 399 134

    [12]

    van der Valk N C J, Planken P C M 2002Appl. Phys. Lett. 81 1558

    [13]

    Chen H T, Kersting R, Cho G C 2003Appl. Phys. Lett. 83 3009

    [14]

    Buersgens F, Kersting R, Chen H T 2006Appl. Phys. Lett. 88 112

    [15]

    Chen X Z, Liu X, Guo X D, Chen S, Hu H, Nikulina E, Ye X L, Yao Z H, Bechtel H A, Martin M C, Carr G L, Dai Q, Zhuang S L, Hu Q, Zhu Y M, Hillenbrand R, Liu M K, You G J 2020ACS Photonics 7 687

    [16]

    Plankl M, Faria P E Jr, Mooshammer F, Siday T, Zizlsperger M, Sandner F, Schiegl F, Maier S, Huber M A, Gmitra M, Fabian J, Boland J L, Cocker T L, Huber R 2021Nat. Photon. 15 594

    [17]

    Chen S, Leng P L, Konečná A, Modin E, Gutierrez-Amigo M, Vicentini E, Martín-García B, Barra-Burillo M, Niehues I, Maciel Escudero C, Xie X Y, Hueso L E, Artacho E, Aizpurua J, Errea I, Vergniory M G, Chuvilin A, Xiu F X, Hillenbrand R 2023Nat. Mater. 22 860

    [18]

    Cocker T L, Jelic V, Gupta M, Molesky S J, Burgess J A J, de los Reyes G, Titova L V, Tsui Y Y, Freeman M R, Hegmann F A 2013Nat. Photon. 7 620

    [19]

    Eisele M, Cocker T L, Huber M A, Plankl M, Viti L, Ercolani D, Sorba L, Vitiello M S, Huber R 2014Nat. Photon. 8 841

    [20]

    Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023Adv. Mater. 35 2208947

    [21]

    Jin Z M, Guo Y Y, Li B Y, Li Z S, Ma G H, Cao S X, Peng Y, Zhu Y M, Zhuang S L 2022Acta Photon. Sin. 51 0751410(in Chinese) [金钻明,郭颖钰,季秉煜,李章顺,马国宏,曹世勋,彭滟,朱亦鸣,庄松林2022光子学报 51 0751410]

    [22]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016Nat. Photon. 10 483

    [23]

    Kong D Y, Wu X J, Wang B, Nie T X, Xiao M, Pandey C, Gao Y, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019Adv. Opt. Mater. 7 1900487

    [24]

    Wang B, Shan S Y, Wu X J, Wang C, Pandey C, Nie T X, Zhao W S, Li Y T, Miao J G, Wang L 2019Appl. Phys. Lett. 115 121104

    [25]

    Chen X H, Wang H T, Wang C, Ouyang C, Wei G S, Nie T X, Zhao W S, Miao J G, Li Y T, Wang L, Wu X J 2021Adv. Photonics Res. 2 2000099

    [26]

    Liu S J, Guo F W, Li P Y, Wei G S, Wang C, Chen X H, Wang B, Zhao W S, Miao J G, Wang L, Xu Y, Wu X J 2022Adv. Mater. Interfaces 9 2101296

    [27]

    Chen X H, Wang H T, Liu H J, Wang C, Wei G S, Fang C, Wang H C, Geng C Y, Liu S J, Li P Y, Yu H M, Zhao W S, Miao J G, Li Y T, Wang L, Nie T X, Zhao J M, Wu X J 2022Adv. Mater. 34 2106172

    [28]

    Liu S J, Lu C H, Fan Z Q, Wang S X, Li P Y, Chen X H, Pan J, Xu Y, Liu Y, Wu X J 2022Appl. Phys. Lett. 120 172404

    [29]

    Li P Y, Liu S J, Liu Z, Li M, Xu H, Xu Y, Zeng H P, Wu X J 2022Appl. Phys. Lett. 120 201102

    [30]

    Klarskov P, Kim H, Colvin V L,. Mittleman D M 2017ACS Photonics 4 2676

    [31]

    Pizzuto A, Ma P C, Mittleman D M 2023Light Sci. Appl. 12 96

    [32]

    Hillenbrand R, Abate Y, Liu M, Chen X, Basov D N 2025 Nat. Rev. Mater. 10 285

    [33]

    von Ribbeck H G, Brehm M, van der Weide D W, Winnerl S, Drachenko O, Helm M, Keilmann F 2008Opt. Express 16 3430

    [34]

    Siday T, Hale L L, Hermans R I, Mitrofanov O 2020ACS Photonics 7 596

    [35]

    Mastel S, Lundeberg M B, Alonso-González P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppens F H L, Nikitin A Y, Hillenbrand R 2017Nano Lett. 17 6526

    [36]

    Maissen C, Chen S, Nikulina E, Govyadinov A, Hillenbrand R 2019ACS Photonics 6 1279

    [37]

    Moon Y, Lee H, Lim J, Lee G, Kim J, Han H 2023AIP Adv. 13065211

    [38]

    Pistore V, Schiattarella C, Viti L, Siday T, Johnston M B, Mitrofanov O, Vitiello M S 2024 Appl. Phys. Lett. 124 221105

    [39]

    Cai J H, Dai M C, Chen S, Chen P, Wang J Q, Xiong H T, Ren Z J, Liu S J, Liu Z K, Wan C H, Bai M, Wu X J 2023Appl. Phys. Rev. 10 041414

    [40]

    Huang Z Y, Li J, Li P Y, Du L, Dai M C, Cai J H, Ren Z J, Nie T X, Wu X J 2025iScience 28 111840

    [41]

    Tanaka S, More S D, Murakami J, Itoh M, Fujii Y, Kamada M 2001Phys. Rev. B 64155308

    [42]

    Maeda N, Hata H, Osada N, Shen Q, Toyoda T, Kuwahara S, Katayama K 2013Phys. Chem. Chem. Phys. 15 11006

    [43]

    Shingai D, Ide Y, Sohn W Y, Katayama K 2018Phys. Chem. Chem. Phys. 20 3484

    [44]

    Astratov V N, Sahel Y B, Eldar Y C, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao Y-T, Hsieh C-L, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked N T, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng J-X, Kariman B S, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang G-J, Chu S-W, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen M J, Stanciu S G, Smolyaninova V N, Smolyaninov I I, Leonhardt U, Sahebdivan S, Wang Z, Luk'yanchuk B, Wu L, Maslov A V, Jin B, Simovski C R, Perrin S, Montgomery P, Lecler S 2023Laser & Photonics Rev. 17 2200029

    [45]

    Shenyang H, Chong W, Yuangang X, Boyang Y, Hugen Y 2023Photonics Insights 2 R03

    [46]

    Tao W H, Zhao S H, Dong H J, Zhang G F, Yang S M 2024Metro. Sci. Technol. 68 76(in Chinese) [陶伟灏,赵书浩,董涵瑾,张国锋,杨树明2024计量科学与技术68 76]

    [47]

    Park Y, Depeursinge C, Popescu G 2018Nat. Photon. 12 578

    [48]

    Paturzo M, Merola F, Grilli S, Nicola S D, Finizio A, Ferraro P 2008Opt. Express 16 17107

    [49]

    Jiaji L, Alex C M, Yunzhe L, Qian C, Chao Z, Lei T 2019Adv. Photon. 1 066004

    [50]

    Lü X, Röben B, Biermann K, Wubs J R, Macherius U, Weltmann K D, van Helden J H, Schrottke L, Grahn H T 2023 Semicond. Sci. Technol. 38 035003

    [51]

    Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014J. Phys. D: Appl. Phys. 47 374008

    [52]

    Hübers H W, Eichholz R, Pavlov S G, Richter H 2013J. Infrared Milli. Terahz. Waves 34 325

  • [1] 张洋, 张志豪, 王宇剑, 薛晓兰, 陈令修, 石礼伟. 偏振调制扫描光学显微镜方法. 物理学报, doi: 10.7498/aps.73.20240688
    [2] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, doi: 10.7498/aps.70.20201054
    [3] 程哲. 第三代半导体材料及器件中的热科学和工程问题. 物理学报, doi: 10.7498/aps.70.20211662
    [4] 张倬铖, 王月莹, 张晓秋艳, 张天宇, 许星星, 赵陶, 宫玉彬, 魏彦玉, 胡旻. 太赫兹散射式扫描近场光学显微镜中探针与样品互作用及其影响探究. 物理学报, doi: 10.7498/aps.70.20211715
    [5] 王美昌, 于斌, 张炜, 林丹樱, 屈军乐. 基于数字微镜器件的数字线扫描荧光显微成像技术. 物理学报, doi: 10.7498/aps.69.20200908
    [6] 江风益, 刘军林, 张建立, 徐龙权, 丁杰, 王光绪, 全知觉, 吴小明, 赵鹏, 刘苾雨, 李丹, 王小兰, 郑畅达, 潘拴, 方芳, 莫春兰. 半导体黄光发光二极管新材料新器件新设备. 物理学报, doi: 10.7498/aps.68.20191044
    [7] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, doi: 10.7498/aps.68.20182275
    [8] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, doi: 10.7498/aps.67.20181818
    [9] 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件. 物理学报, doi: 10.7498/aps.66.218101
    [10] 曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙. 正电子湮没谱学研究半导体材料微观结构的应用进展. 物理学报, doi: 10.7498/aps.66.027801
    [11] 池浪, 费洪涛, 王腾, 易建鹏, 方月婷, 夏瑞东. 基于有机半导体激光材料的高灵敏度溶液检测传感器件. 物理学报, doi: 10.7498/aps.65.064202
    [12] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, doi: 10.7498/aps.64.194201
    [13] 刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君. 铜锌锡硫薄膜材料及其器件应用研究进展. 物理学报, doi: 10.7498/aps.64.068801
    [14] 代煜, 张建勋. 基于小波变换和维纳滤波的半导体器件1/f噪声滤波. 物理学报, doi: 10.7498/aps.60.110516
    [15] 王国军, 吴世法, 李旭峰, 李睿, 段建民, 潘石. 带金属尖四棱锥小孔光探针光斑近场分布数值模拟. 物理学报, doi: 10.7498/aps.59.192
    [16] 陈华, 汪力. 太赫兹波在亚波长随机金属Al颗粒中的相干传播. 物理学报, doi: 10.7498/aps.58.8271
    [17] 李 智, 张家森, 杨 景, 龚旗煌. 飞秒时间分辨近场光学系统实现及其应用. 物理学报, doi: 10.7498/aps.56.3630
    [18] 许兴胜, 熊志刚, 金爱子, 陈弘达, 张道中. 聚焦离子束研制半导体材料光子晶体. 物理学报, doi: 10.7498/aps.56.916
    [19] 柳学榕, 胡泊, 刘文汉, 高琛. 扫描近场微波显微镜测量非线性介电常数的理论校准系数. 物理学报, doi: 10.7498/aps.52.34
    [20] 王子洋, 李 勤, 赵 钧, 郭继华. 透射式扫描近场光学显微镜探针光场分布及其受激荧光分子光场分布研究. 物理学报, doi: 10.7498/aps.49.1959
计量
  • 文章访问数:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-13

/

返回文章
返回