-
纳米尺度下的太赫兹(THz)时域光谱与成像技术对于材料研究和器件检测等至关重要。然而,受限于THz波波长衍射极限的限制,传统的远场THz时域光谱与成像技术无法提供飞秒时间尺度和纳米空间分辨的载流子浓度分布和超快动力学过程研究。本文介绍了基于超快THz时域光谱成像技术与扫描探针技术耦合的超快THz散射型扫描近场光学显微镜系统。利用针尖与样品表面的近场相互作用,该近场系统已被证实可以以~60 nm横向空间分辨率的静态THz光谱实现半导体材料和器件研究,进而获得半导体材料和器件的静态THz电导率分布情况,而且还可以通过光激发瞬态载流子的方式,获得半导体材料的瞬态电导率和激光THz发射超快动力学过程,为研究材料和器件在纳米空间分辨,超快时间分辨和THz谱学成像方面的性能提供了有力支持。Terahertz (THz) time-domain spectroscopy and imaging techniques at the nanoscale are imperative for materials research and devices detection, among others. However, conventional far-field THz time-domain spectroscopy faces inherent diffraction limits, restricting applications requiring femtosecond temporal resolution and nanoscale spatial precision for carrier dynamics analysis. We present a scattering-type scanning near-field optical microscopy that overcomes these constraints by combining ultrafast THz time-domain spectroscopy with AFM. The utilization of the near-field interaction between the needle's tip and the sample's surface has been demonstrated to facilitate the study of semiconductor materials and devices with static THz spectroscopy at a lateral spatial resolution of ~60 nm. This, in turn, enables the acquisition of static THz conductivity distributions of the semiconductor materials. Additionally, it facilitates the acquisition of transient conductivity distributions of semiconductor materials and laser THz emission ultrafast via photoexcited transient carrier kinetic processes. This aspect provides substantial support for the study of the performance of materials and devices in nanometer spatial resolution, ultrafast time resolution, and THz spectroscopic imaging.The experimental results show that the system has a signal-to-noise ratio as high as 56.34 dB in the static THz time-domain spectral mode, and can effectively extract the fifth-order harmonic signals covering the 0.2-2.2 THz frequency band with a spatial resolution of up to ~60 nm. Carrier excitation and complexation processes in topological insulators have been successfully observed by optical pump-THz probe with a time resolution better than 100 fs. Imaging of SRAM samples by the system reveals differences in THz scattering intensity due to non-uniformity in doping concentration, validating its potential for nanoscale defect detection.This study not only provides an innovative means for the study of nanoscale electrical characterization of semiconductor materials and devices, but also opens up new avenues for the application of THz technology in interdisciplinary subjects such as nanophotonics and spintronics. In the future, the temporal and spatial resolution and detection efficiency of the system are expected to be further improved by integrating the superlens technology, optimizing the probe design and introducing deep learning algorithms.
-
Keywords:
- Terahertz electromagnetic wave /
- Scanning near-field optical microscope /
- Semiconductor materials /
- Devices
-
[1] Chen X L, Ma M W, Yang X M, Yang K, Ji T, Wu S W, Zhu Z Y 2008Acta Phys.-Chem. Sin. 24 1969(in Chinese) [陈西良,马明旺,杨小敏,杨康,吉特,吴胜伟,朱智勇2008物理化学学报24 1969]
[2] Cocker T L, Jelic V, Hillenbrand R, Hegmann F 2021Nat. Photon. 15 558
[3] Jepsen P U, Cooke D G, Koch M 2011Laser Photon. Rev. 5 124
[4] Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011Rev. Mod. Phys. 83 543
[5] Kampfrath T, Tanaka K, Nelson, K A 2013Nat. Photon. 7 680
[6] Lloyd-Hughes J 2005Phys. Rev. B 71 195301
[7] Beard M C, Turner G M, Schmuttenmaer C A 2000Phys. Rev. B 62 15764
[8] Xing X, Zhao L T, Zhang Z Y, Liu X K, Zhang K L, Yu Y, Lin X, Chen H Y, Chen J Q, Jin Z M, Xu J H, Ma G H 2017J. Phys. Chem. C 12120451
[9] Knoll B, Keilmann F, Kramer A, Guckenberger R 1997Appl. Phys. Lett. 70 2667
[10] Lahrech A, Bachelot R, Gleyzes P, Boccara A C 1996Opt. Lett. 211315
[11] Knoll B, Keilmann F 1999Nature 399 134
[12] van der Valk N C J, Planken P C M 2002Appl. Phys. Lett. 81 1558
[13] Chen H T, Kersting R, Cho G C 2003Appl. Phys. Lett. 83 3009
[14] Buersgens F, Kersting R, Chen H T 2006Appl. Phys. Lett. 88 112
[15] Chen X Z, Liu X, Guo X D, Chen S, Hu H, Nikulina E, Ye X L, Yao Z H, Bechtel H A, Martin M C, Carr G L, Dai Q, Zhuang S L, Hu Q, Zhu Y M, Hillenbrand R, Liu M K, You G J 2020ACS Photonics 7 687
[16] Plankl M, Faria P E Jr, Mooshammer F, Siday T, Zizlsperger M, Sandner F, Schiegl F, Maier S, Huber M A, Gmitra M, Fabian J, Boland J L, Cocker T L, Huber R 2021Nat. Photon. 15 594
[17] Chen S, Leng P L, Konečná A, Modin E, Gutierrez-Amigo M, Vicentini E, Martín-García B, Barra-Burillo M, Niehues I, Maciel Escudero C, Xie X Y, Hueso L E, Artacho E, Aizpurua J, Errea I, Vergniory M G, Chuvilin A, Xiu F X, Hillenbrand R 2023Nat. Mater. 22 860
[18] Cocker T L, Jelic V, Gupta M, Molesky S J, Burgess J A J, de los Reyes G, Titova L V, Tsui Y Y, Freeman M R, Hegmann F A 2013Nat. Photon. 7 620
[19] Eisele M, Cocker T L, Huber M A, Plankl M, Viti L, Ercolani D, Sorba L, Vitiello M S, Huber R 2014Nat. Photon. 8 841
[20] Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023Adv. Mater. 35 2208947
[21] Jin Z M, Guo Y Y, Li B Y, Li Z S, Ma G H, Cao S X, Peng Y, Zhu Y M, Zhuang S L 2022Acta Photon. Sin. 51 0751410(in Chinese) [金钻明,郭颖钰,季秉煜,李章顺,马国宏,曹世勋,彭滟,朱亦鸣,庄松林2022光子学报 51 0751410]
[22] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016Nat. Photon. 10 483
[23] Kong D Y, Wu X J, Wang B, Nie T X, Xiao M, Pandey C, Gao Y, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019Adv. Opt. Mater. 7 1900487
[24] Wang B, Shan S Y, Wu X J, Wang C, Pandey C, Nie T X, Zhao W S, Li Y T, Miao J G, Wang L 2019Appl. Phys. Lett. 115 121104
[25] Chen X H, Wang H T, Wang C, Ouyang C, Wei G S, Nie T X, Zhao W S, Miao J G, Li Y T, Wang L, Wu X J 2021Adv. Photonics Res. 2 2000099
[26] Liu S J, Guo F W, Li P Y, Wei G S, Wang C, Chen X H, Wang B, Zhao W S, Miao J G, Wang L, Xu Y, Wu X J 2022Adv. Mater. Interfaces 9 2101296
[27] Chen X H, Wang H T, Liu H J, Wang C, Wei G S, Fang C, Wang H C, Geng C Y, Liu S J, Li P Y, Yu H M, Zhao W S, Miao J G, Li Y T, Wang L, Nie T X, Zhao J M, Wu X J 2022Adv. Mater. 34 2106172
[28] Liu S J, Lu C H, Fan Z Q, Wang S X, Li P Y, Chen X H, Pan J, Xu Y, Liu Y, Wu X J 2022Appl. Phys. Lett. 120 172404
[29] Li P Y, Liu S J, Liu Z, Li M, Xu H, Xu Y, Zeng H P, Wu X J 2022Appl. Phys. Lett. 120 201102
[30] Klarskov P, Kim H, Colvin V L,. Mittleman D M 2017ACS Photonics 4 2676
[31] Pizzuto A, Ma P C, Mittleman D M 2023Light Sci. Appl. 12 96
[32] Hillenbrand R, Abate Y, Liu M, Chen X, Basov D N 2025 Nat. Rev. Mater. 10 285
[33] von Ribbeck H G, Brehm M, van der Weide D W, Winnerl S, Drachenko O, Helm M, Keilmann F 2008Opt. Express 16 3430
[34] Siday T, Hale L L, Hermans R I, Mitrofanov O 2020ACS Photonics 7 596
[35] Mastel S, Lundeberg M B, Alonso-González P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppens F H L, Nikitin A Y, Hillenbrand R 2017Nano Lett. 17 6526
[36] Maissen C, Chen S, Nikulina E, Govyadinov A, Hillenbrand R 2019ACS Photonics 6 1279
[37] Moon Y, Lee H, Lim J, Lee G, Kim J, Han H 2023AIP Adv. 13065211
[38] Pistore V, Schiattarella C, Viti L, Siday T, Johnston M B, Mitrofanov O, Vitiello M S 2024 Appl. Phys. Lett. 124 221105
[39] Cai J H, Dai M C, Chen S, Chen P, Wang J Q, Xiong H T, Ren Z J, Liu S J, Liu Z K, Wan C H, Bai M, Wu X J 2023Appl. Phys. Rev. 10 041414
[40] Huang Z Y, Li J, Li P Y, Du L, Dai M C, Cai J H, Ren Z J, Nie T X, Wu X J 2025iScience 28 111840
[41] Tanaka S, More S D, Murakami J, Itoh M, Fujii Y, Kamada M 2001Phys. Rev. B 64155308
[42] Maeda N, Hata H, Osada N, Shen Q, Toyoda T, Kuwahara S, Katayama K 2013Phys. Chem. Chem. Phys. 15 11006
[43] Shingai D, Ide Y, Sohn W Y, Katayama K 2018Phys. Chem. Chem. Phys. 20 3484
[44] Astratov V N, Sahel Y B, Eldar Y C, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao Y-T, Hsieh C-L, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked N T, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng J-X, Kariman B S, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang G-J, Chu S-W, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen M J, Stanciu S G, Smolyaninova V N, Smolyaninov I I, Leonhardt U, Sahebdivan S, Wang Z, Luk'yanchuk B, Wu L, Maslov A V, Jin B, Simovski C R, Perrin S, Montgomery P, Lecler S 2023Laser & Photonics Rev. 17 2200029
[45] Shenyang H, Chong W, Yuangang X, Boyang Y, Hugen Y 2023Photonics Insights 2 R03
[46] Tao W H, Zhao S H, Dong H J, Zhang G F, Yang S M 2024Metro. Sci. Technol. 68 76(in Chinese) [陶伟灏,赵书浩,董涵瑾,张国锋,杨树明2024计量科学与技术68 76]
[47] Park Y, Depeursinge C, Popescu G 2018Nat. Photon. 12 578
[48] Paturzo M, Merola F, Grilli S, Nicola S D, Finizio A, Ferraro P 2008Opt. Express 16 17107
[49] Jiaji L, Alex C M, Yunzhe L, Qian C, Chao Z, Lei T 2019Adv. Photon. 1 066004
[50] Lü X, Röben B, Biermann K, Wubs J R, Macherius U, Weltmann K D, van Helden J H, Schrottke L, Grahn H T 2023 Semicond. Sci. Technol. 38 035003
[51] Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014J. Phys. D: Appl. Phys. 47 374008
[52] Hübers H W, Eichholz R, Pavlov S G, Richter H 2013J. Infrared Milli. Terahz. Waves 34 325
计量
- 文章访问数: 5
- PDF下载量: 0
- 被引次数: 0